test_imperative_double_grad.py 26.6 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22
import paddle.compat as cpt
W
Weilong Wu 已提交
23
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
24
import paddle.fluid.core as core
25 26 27


def _dygraph_guard_(func):
28

29
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
30
        if fluid._non_static_mode():
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


47
class TestEagerGrad(TestCase):
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def func_simple_example_eager_grad_duplicate_input(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate input will arise RuntimeError errors
            dx = fluid.dygraph.grad(out, [x, x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_input(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_input()
        self.func_simple_example_eager_grad_duplicate_input()

    def func_simple_example_eager_grad_duplicate_output(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate output will arise RuntimeError errors
            dx = fluid.dygraph.grad([out, out], [x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_output(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_output()
        self.func_simple_example_eager_grad_duplicate_output()

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    def test_simple_example_eager_two_grad_output(self):
        with _test_eager_guard():
            x1 = paddle.to_tensor([1.0, 2.0])
            x1.stop_gradient = False
            x2 = paddle.to_tensor([1.0, 2.0])
            x2.stop_gradient = False
            out1 = x1 * 2
            out2 = x2 * 2

            dout2_record_by_hook = []

            def record_hook(grad):
                dout2_record_by_hook.append(grad)

            out2.register_hook(record_hook)

            out3 = paddle.multiply(out1, out2)
            out4 = paddle.mean(out3)
            egr_dout2, egr_dout3 = paddle.grad([out4], [out2, out3])

            self.assertTrue(
                np.array_equal(dout2_record_by_hook[0].numpy(),
                               np.array([1., 2.])))

        x1 = paddle.to_tensor([1.0, 2.0])
        x1.stop_gradient = False
        x2 = paddle.to_tensor([1.0, 2.0])
        x2.stop_gradient = False
        out1 = x1 * 2
        out2 = x2 * 2

        out3 = paddle.multiply(out1, out2)
        out4 = paddle.mean(out3)
        dout2, dout3 = paddle.grad([out4], [out2, out3])

        self.assertEqual(dout2.stop_gradient, egr_dout2.stop_gradient)
        self.assertEqual(dout3.stop_gradient, egr_dout3.stop_gradient)
        self.assertTrue(np.array_equal(dout2.numpy(), egr_dout2.numpy()))
        self.assertTrue(np.array_equal(dout3.numpy(), egr_dout3.numpy()))

209

210
class TestDygraphDoubleGrad(TestCase):
211

212 213 214 215 216 217 218 219
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
220 221 222 223
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
224
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
225 226 227 228 229 230 231
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
232 233

    @dygraph_guard
234
    def func_exception(self):
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
257 258
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
259 260

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
261
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
262

263 264 265 266 267
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

268
    @dygraph_guard
269
    def func_simple_example(self):
270 271 272 273 274
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
275 276 277
            dx, = self.grad([x], [x],
                            create_graph=create_graph,
                            retain_graph=True)
278 279 280 281
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

282 283 284
            dx_mul_2, = self.grad([y, x], [x],
                                  create_graph=create_graph,
                                  retain_graph=True)
285 286 287 288
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

289 290 291
            none_grad, = self.grad([x], [y],
                                   create_graph=create_graph,
                                   allow_unused=True)
292 293
            self.assertTrue(none_grad is None)

294 295
            grad_with_none_and_not_none, = self.grad([x, y], [y],
                                                     create_graph=create_graph)
296 297 298 299 300
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

301 302 303 304 305
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

306
    @dygraph_guard
307 308 309 310 311 312 313 314 315 316 317 318 319 320
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

321 322 323
        dx_actual, = self.grad([w_mean], [x],
                               create_graph=True,
                               no_grad_vars=[y2])
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
340 341 342 343 344 345
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
346 347 348 349 350
        half_x_negative = np.random.uniform(low=-2,
                                            high=-1,
                                            size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) +
                        list(half_x_negative)).astype('float32')
351 352 353
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
354 355
        x.stop_gradient = False

356 357
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
358 359 360 361
        y = y * y
        z = y * y

        x_np = x.numpy()
362 363
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
364 365 366 367
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

368 369
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
370 371 372 373 374 375 376 377 378
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
379 380 381 382 383
                    dx_actual, = self.grad(outputs=[y, z],
                                           inputs=[x],
                                           grad_outputs=[grad_y, grad_z],
                                           create_graph=create_graph,
                                           retain_graph=True)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_y.numpy(),
                                           original_random_grad_y))

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_z.numpy(),
                                           original_random_grad_z))

405 406 407 408 409
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

410
    @dygraph_guard
411
    def func_example_with_gradient_accumulation_and_create_graph(self):
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

434 435
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward(retain_graph=True)
436

437 438 439 440 441 442 443 444
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

        for i in range(5):
            loss.backward(retain_graph=True)
445
            x_grad_actual = x.gradient()
446 447 448 449
            x_grad_expected = (
                i + 2) * (2.0 / float(numel) *
                          (x_np + dx_expected *
                           (x_np > 0) * 2 / float(numel))).astype('float32')
450 451
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

452 453 454 455 456
    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

457
    @dygraph_guard
458
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
459 460 461 462 463 464 465 466 467 468 469 470 471
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

472 473 474 475
        dx_actual, = self.grad([w_mean], [x],
                               retain_graph=True,
                               create_graph=True,
                               no_grad_vars=[y2])
476 477 478 479 480 481 482 483

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

484 485
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
486

487 488 489 490 491
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
492 493 494 495 496

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
497 498

    @dygraph_guard
499
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

522 523
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
524

525 526 527
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
528 529 530 531 532

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
533 534 535


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
536

537 538 539 540 541
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
542
class TestDygraphDoubleGradVisitedUniq(TestCase):
543

544
    def func_compare(self):
545 546
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
547 548

        def model_f(input):
549
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
550 551
            for i in range(10):
                if i == 0:
552
                    out = linear(input)
H
hong 已提交
553
                else:
554
                    out = out + linear(input)
H
hong 已提交
555 556
            return out

557 558
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
559
        with fluid.dygraph.guard():
C
cnn 已提交
560
            paddle.seed(123)
L
Leo Chen 已提交
561
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
562 563 564 565 566
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

567 568 569 570 571
            dx = fluid.dygraph.grad(outputs=[out],
                                    inputs=[a],
                                    create_graph=False,
                                    only_inputs=True,
                                    allow_unused=False)
H
hong 已提交
572 573 574 575

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
576
            paddle.seed(123)
L
Leo Chen 已提交
577
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
578 579 580 581
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
582
            out.backward()
H
hong 已提交
583 584 585

            grad_2 = a.gradient()

586 587
        self.assertTrue(np.array_equal(grad_1, grad_2))

588 589 590 591 592
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

593 594

class TestRaiseNoDoubleGradOp(TestCase):
595

596 597 598 599
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
600
            y = paddle.fluid.layers.group_norm(x, groups=1)
601

602 603 604 605
            dx = fluid.dygraph.grad(outputs=[y],
                                    inputs=[x],
                                    create_graph=True,
                                    retain_graph=True)[0]
606 607 608 609 610

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
611
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
612 613


W
Weilong Wu 已提交
614
class TestDoubleGradResNet(TestCase):
615

W
Weilong Wu 已提交
616 617 618 619 620
    def setUp(self):
        paddle.seed(123)
        paddle.framework.random._manual_program_seed(123)
        self.data = np.random.rand(1, 3, 224, 224).astype(np.float32)

Z
Zeng Jinle 已提交
621
    @dygraph_guard
W
Weilong Wu 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def test_resnet_resnet50(self):
        with _test_eager_guard():
            model = resnet50(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet50(pretrained=False)
        data = paddle.to_tensor(self.data)
Z
Zeng Jinle 已提交
639
        data.stop_gradient = False
W
Weilong Wu 已提交
640
        out = model(data)
Z
Zeng Jinle 已提交
641
        preds = paddle.argmax(out, axis=1)
642 643
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
Z
Zeng Jinle 已提交
644 645 646 647 648 649
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))

W
Weilong Wu 已提交
650 651
        self.assertTrue(np.array_equal(egr_out, out))
        self.assertTrue(np.array_equal(egr_g_numpy, g_numpy))
Z
Zeng Jinle 已提交
652

W
Weilong Wu 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    @dygraph_guard
    def test_resnet_resnet101(self):
        with _test_eager_guard():
            model = resnet101(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet101(pretrained=False)
        data = paddle.to_tensor(self.data)
        data.stop_gradient = False
        out = model(data)
        preds = paddle.argmax(out, axis=1)
674 675
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
W
Weilong Wu 已提交
676
        target = paddle.sum(out * label_onehot, axis=1)
Z
Zeng Jinle 已提交
677

W
Weilong Wu 已提交
678 679 680
        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))
Z
Zeng Jinle 已提交
681

W
Weilong Wu 已提交
682 683
        self.assertTrue(np.array_equal(egr_out, out))
        self.assertTrue(np.array_equal(egr_g_numpy, g_numpy))
Z
Zeng Jinle 已提交
684 685


686
class TestDoubleGradBasics(TestCase):
687

688 689 690
    def test_matmul(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
691 692 693 694 695 696 697 698 699
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            grad_out = paddle.to_tensor(np.ones([3, 3]),
                                        stop_gradient=False,
                                        dtype='float32')
700 701

            out = paddle.matmul(x, y, False, False)
702 703 704
            new_x_g, new_y_g = paddle.grad([out], [x, y], [grad_out],
                                           retain_graph=True,
                                           create_graph=True)
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            new_x_g.backward()

            out_ref = np.ones([3, 3]) * 12.0
            self.assertTrue(np.array_equal(out.numpy(), out_ref))

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
            self.assertTrue(np.array_equal(new_x_g.numpy(), new_x_g_ref))
            self.assertTrue(np.array_equal(new_y_g.numpy(), new_y_g_ref))

            x_grad_ref = np.ones([3, 3]) * 0.0
            self.assertTrue(np.array_equal(x.grad.numpy(), x_grad_ref))

            y_grad_ref = np.ones([3, 3]) * 3.0
            self.assertTrue(np.array_equal(y.grad.numpy(), y_grad_ref))

            grad_out_grad_ref = np.ones([3, 3]) * 6.0
            self.assertTrue(
                np.array_equal(grad_out.grad.numpy(), grad_out_grad_ref))


726 727
if __name__ == '__main__':
    unittest.main()