test_imperative_double_grad.py 21.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22 23 24
import paddle.compat as cpt
from paddle.fluid.framework import _test_eager_guard
import paddle.fluid.core as core
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
        if fluid.in_dygraph_mode():
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class TestEagerGrad(TestCase):
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    def func_simple_example_eager_grad_duplicate_input(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate input will arise RuntimeError errors
            dx = fluid.dygraph.grad(out, [x, x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_input(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_input()
        self.func_simple_example_eager_grad_duplicate_input()

    def func_simple_example_eager_grad_duplicate_output(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate output will arise RuntimeError errors
            dx = fluid.dygraph.grad([out, out], [x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_output(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_output()
        self.func_simple_example_eager_grad_duplicate_output()

167

168 169 170 171 172 173 174 175 176
class TestDygraphDoubleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
177 178 179 180
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
181
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
Z
Zeng Jinle 已提交
182
        return fluid.dygraph.grad(
183 184 185
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
Z
Zeng Jinle 已提交
186 187
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
188
            create_graph=create_graph,
189
            allow_unused=allow_unused)
190 191

    @dygraph_guard
192
    def func_exception(self):
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
215 216
            self.grad(
                [random_var(shape)], [random_var(shape)], no_grad_vars=[1])
217 218

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
219
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
220

221 222 223 224 225
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

226
    @dygraph_guard
227
    def func_simple_example(self):
228 229 230 231 232
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
Z
Zeng Jinle 已提交
233 234
            dx, = self.grad(
                [x], [x], create_graph=create_graph, retain_graph=True)
235 236 237 238
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

Z
Zeng Jinle 已提交
239 240
            dx_mul_2, = self.grad(
                [y, x], [x], create_graph=create_graph, retain_graph=True)
241 242 243 244
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

Z
Zeng Jinle 已提交
245 246
            none_grad, = self.grad(
                [x], [y], create_graph=create_graph, allow_unused=True)
247 248 249 250 251 252 253 254 255
            self.assertTrue(none_grad is None)

            grad_with_none_and_not_none, = self.grad(
                [x, y], [y], create_graph=create_graph)
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

256 257 258 259 260
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

261
    @dygraph_guard
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

        dx_actual, = self.grad(
            [w_mean], [x], create_graph=True, no_grad_vars=[y2])

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
294 295 296 297 298 299 300 301 302 303 304 305 306
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
        half_x_negative = np.random.uniform(
            low=-2, high=-1, size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) + list(half_x_negative)).astype(
            'float32')
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
307 308
        x.stop_gradient = False

309 310
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
311 312 313 314
        y = y * y
        z = y * y

        x_np = x.numpy()
315 316
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
317 318 319 320
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

321 322
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
323 324 325 326 327 328 329 330 331 332 333 334 335
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
                    dx_actual, = self.grad(
                        outputs=[y, z],
                        inputs=[x],
                        grad_outputs=[grad_y, grad_z],
Z
Zeng Jinle 已提交
336 337
                        create_graph=create_graph,
                        retain_graph=True)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_y.numpy(),
                                           original_random_grad_y))

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_z.numpy(),
                                           original_random_grad_z))

359 360 361 362 363
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

364
    @dygraph_guard
365
    def func_example_with_gradient_accumulation_and_create_graph(self):
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

388 389 390 391
        if core._in_eager_mode():
            pass
        else:
            loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
392
            loss.backward(retain_graph=True)
393

394
            x_grad_actual = x.gradient()
395
            x_grad_expected = (2.0 / float(numel) * (
396 397 398 399
                x_np + dx_expected *
                (x_np > 0) * 2 / float(numel))).astype('float32')
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

400 401 402 403 404 405 406 407 408 409 410 411 412
            for i in range(5):
                loss.backward(retain_graph=True)
                x_grad_actual = x.gradient()
                x_grad_expected = (i + 2) * (2.0 / float(numel) * (
                    x_np + dx_expected *
                    (x_np > 0) * 2 / float(numel))).astype('float32')
                self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

413
    @dygraph_guard
414
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
415 416 417 418 419 420 421 422 423 424 425 426 427 428
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

        dx_actual, = self.grad(
Z
Zeng Jinle 已提交
429
            [w_mean], [x], create_graph=True, no_grad_vars=[y2])
430 431 432 433 434 435 436 437

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

438 439 440 441 442
        if core._in_eager_mode():
            pass
        else:
            loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
            loss.backward()
443

444 445 446 447 448 449 450 451 452 453
            x_grad_actual = x.gradient()
            x_grad_expected = (2.0 / float(numel) * (
                x_np + dx_expected *
                (x_np > 0) * 4 / float(numel))).astype('float32')
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
454 455

    @dygraph_guard
456
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

479 480 481 482 483
        if core._in_eager_mode():
            pass
        else:
            loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
            loss.backward()
484

485 486 487 488 489 490 491 492
            x_grad_actual = x.gradient()
            x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
493 494 495 496 497 498 499 500


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
501
class TestDygraphDoubleGradVisitedUniq(TestCase):
502
    def func_compare(self):
503 504
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
505 506

        def model_f(input):
507
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
508 509
            for i in range(10):
                if i == 0:
510
                    out = linear(input)
H
hong 已提交
511
                else:
512
                    out = out + linear(input)
H
hong 已提交
513 514
            return out

515 516
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
517
        with fluid.dygraph.guard():
C
cnn 已提交
518
            paddle.seed(123)
L
Leo Chen 已提交
519
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
520 521 522 523 524
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

525 526 527
            dx = fluid.dygraph.grad(
                outputs=[out],
                inputs=[a],
528
                create_graph=False,
529
                only_inputs=True,
530
                allow_unused=False)
H
hong 已提交
531 532 533 534

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
535
            paddle.seed(123)
L
Leo Chen 已提交
536
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
537 538 539 540
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
541
            out.backward()
H
hong 已提交
542 543 544

            grad_2 = a.gradient()

545 546
        self.assertTrue(np.array_equal(grad_1, grad_2))

547 548 549 550 551
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

552 553 554 555 556 557

class TestRaiseNoDoubleGradOp(TestCase):
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
558
            y = paddle.fluid.layers.group_norm(x, groups=1)
559 560 561 562 563 564 565 566 567

            dx = fluid.dygraph.grad(
                outputs=[y], inputs=[x], create_graph=True,
                retain_graph=True)[0]

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
568
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
569 570


Z
Zeng Jinle 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
class TestDoubleGradResNetBase(TestCase):
    @dygraph_guard
    def check_resnet(self):
        data = np.random.rand(1, 3, 224, 224).astype(np.float32)
        data = paddle.to_tensor(data)
        data.stop_gradient = False
        out = self.model(data)
        preds = paddle.argmax(out, axis=1)
        label_onehot = paddle.nn.functional.one_hot(
            paddle.to_tensor(preds), num_classes=out.shape[1])
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))


class TestDoubleGradResNet50(TestDoubleGradResNetBase):
    def setUp(self):
        self.model = resnet50(pretrained=False)

    def test_main(self):
        self.check_resnet()


class TestDoubleGradResNet101(TestDoubleGradResNetBase):
    def setUp(self):
        self.model = resnet101(pretrained=False)

    def test_main(self):
        self.check_resnet()


604 605
if __name__ == '__main__':
    unittest.main()