test_imperative_double_grad.py 26.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22
import paddle.compat as cpt
W
Weilong Wu 已提交
23
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
24
import paddle.fluid.core as core
25 26 27


def _dygraph_guard_(func):
28

29
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
30
        if fluid._non_static_mode():
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


47
class TestEagerGrad(TestCase):
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def func_simple_example_eager_grad_duplicate_input(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate input will arise RuntimeError errors
            dx = fluid.dygraph.grad(out, [x, x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_input(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_input()
        self.func_simple_example_eager_grad_duplicate_input()

    def func_simple_example_eager_grad_duplicate_output(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate output will arise RuntimeError errors
            dx = fluid.dygraph.grad([out, out], [x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_output(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_output()
        self.func_simple_example_eager_grad_duplicate_output()

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def test_simple_example_eager_two_grad_output(self):
        with _test_eager_guard():
            x1 = paddle.to_tensor([1.0, 2.0])
            x1.stop_gradient = False
            x2 = paddle.to_tensor([1.0, 2.0])
            x2.stop_gradient = False
            out1 = x1 * 2
            out2 = x2 * 2

            dout2_record_by_hook = []

            def record_hook(grad):
                dout2_record_by_hook.append(grad)

            out2.register_hook(record_hook)

            out3 = paddle.multiply(out1, out2)
            out4 = paddle.mean(out3)
            egr_dout2, egr_dout3 = paddle.grad([out4], [out2, out3])

189 190
            np.testing.assert_array_equal(dout2_record_by_hook[0].numpy(),
                                          np.array([1.0, 2.0]))
191 192 193 194 195 196 197 198 199 200 201 202 203 204

        x1 = paddle.to_tensor([1.0, 2.0])
        x1.stop_gradient = False
        x2 = paddle.to_tensor([1.0, 2.0])
        x2.stop_gradient = False
        out1 = x1 * 2
        out2 = x2 * 2

        out3 = paddle.multiply(out1, out2)
        out4 = paddle.mean(out3)
        dout2, dout3 = paddle.grad([out4], [out2, out3])

        self.assertEqual(dout2.stop_gradient, egr_dout2.stop_gradient)
        self.assertEqual(dout3.stop_gradient, egr_dout3.stop_gradient)
205 206
        np.testing.assert_array_equal(dout2.numpy(), egr_dout2.numpy())
        np.testing.assert_array_equal(dout3.numpy(), egr_dout3.numpy())
207

208

209
class TestDygraphDoubleGrad(TestCase):
210

211 212 213 214 215 216 217 218
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
219 220 221 222
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
223
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
224 225 226 227 228 229 230
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
231 232

    @dygraph_guard
233
    def func_exception(self):
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
256 257
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
258 259

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
260
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
261

262 263 264 265 266
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

267
    @dygraph_guard
268
    def func_simple_example(self):
269 270 271 272 273
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
274 275 276
            dx, = self.grad([x], [x],
                            create_graph=create_graph,
                            retain_graph=True)
277 278 279 280
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

281 282 283
            dx_mul_2, = self.grad([y, x], [x],
                                  create_graph=create_graph,
                                  retain_graph=True)
284 285 286 287
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

288 289 290
            none_grad, = self.grad([x], [y],
                                   create_graph=create_graph,
                                   allow_unused=True)
291 292
            self.assertTrue(none_grad is None)

293 294
            grad_with_none_and_not_none, = self.grad([x, y], [y],
                                                     create_graph=create_graph)
295 296 297 298 299
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

300 301 302 303 304
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

305
    @dygraph_guard
306 307 308 309 310 311 312 313 314 315 316 317 318 319
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

320 321 322
        dx_actual, = self.grad([w_mean], [x],
                               create_graph=True,
                               no_grad_vars=[y2])
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
339 340 341 342 343 344
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
345 346 347 348 349
        half_x_negative = np.random.uniform(low=-2,
                                            high=-1,
                                            size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) +
                        list(half_x_negative)).astype('float32')
350 351 352
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
353 354
        x.stop_gradient = False

355 356
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
357 358 359 360
        y = y * y
        z = y * y

        x_np = x.numpy()
361 362
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
363 364 365 366
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

367 368
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
369 370 371 372 373 374 375 376 377
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
378 379 380 381 382
                    dx_actual, = self.grad(outputs=[y, z],
                                           inputs=[x],
                                           grad_outputs=[grad_y, grad_z],
                                           create_graph=create_graph,
                                           retain_graph=True)
383 384 385 386 387 388 389 390 391 392 393

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
394 395
                        np.testing.assert_array_equal(grad_y.numpy(),
                                                      original_random_grad_y)
396 397 398

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
399 400
                        np.testing.assert_array_equal(grad_z.numpy(),
                                                      original_random_grad_z)
401

402 403 404 405 406
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

407
    @dygraph_guard
408
    def func_example_with_gradient_accumulation_and_create_graph(self):
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

431 432
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward(retain_graph=True)
433

434 435 436 437 438 439 440 441
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

        for i in range(5):
            loss.backward(retain_graph=True)
442
            x_grad_actual = x.gradient()
443 444 445 446
            x_grad_expected = (
                i + 2) * (2.0 / float(numel) *
                          (x_np + dx_expected *
                           (x_np > 0) * 2 / float(numel))).astype('float32')
447 448
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

449 450 451 452 453
    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

454
    @dygraph_guard
455
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
456 457 458 459 460 461 462 463 464 465 466 467 468
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

469 470 471 472
        dx_actual, = self.grad([w_mean], [x],
                               retain_graph=True,
                               create_graph=True,
                               no_grad_vars=[y2])
473 474 475 476 477 478 479 480

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

481 482
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
483

484 485 486 487 488
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
489 490 491 492 493

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
494 495

    @dygraph_guard
496
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

519 520
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
521

522 523 524
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
525 526 527 528 529

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
530 531 532


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
533

534 535 536 537 538
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
539
class TestDygraphDoubleGradVisitedUniq(TestCase):
540

541
    def func_compare(self):
542 543
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
544 545

        def model_f(input):
546
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
547 548
            for i in range(10):
                if i == 0:
549
                    out = linear(input)
H
hong 已提交
550
                else:
551
                    out = out + linear(input)
H
hong 已提交
552 553
            return out

554 555
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
556
        with fluid.dygraph.guard():
C
cnn 已提交
557
            paddle.seed(123)
L
Leo Chen 已提交
558
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
559 560 561 562 563
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

564 565 566 567 568
            dx = fluid.dygraph.grad(outputs=[out],
                                    inputs=[a],
                                    create_graph=False,
                                    only_inputs=True,
                                    allow_unused=False)
H
hong 已提交
569 570 571 572

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
573
            paddle.seed(123)
L
Leo Chen 已提交
574
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
575 576 577 578
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
579
            out.backward()
H
hong 已提交
580 581 582

            grad_2 = a.gradient()

583
        np.testing.assert_array_equal(grad_1, grad_2)
584

585 586 587 588 589
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

590 591

class TestRaiseNoDoubleGradOp(TestCase):
592

593 594 595 596
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
597
            y = paddle.fluid.layers.group_norm(x, groups=1)
598

599 600 601 602
            dx = fluid.dygraph.grad(outputs=[y],
                                    inputs=[x],
                                    create_graph=True,
                                    retain_graph=True)[0]
603 604 605 606 607

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
608
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
609 610


W
Weilong Wu 已提交
611
class TestDoubleGradResNet(TestCase):
612

W
Weilong Wu 已提交
613 614 615 616 617
    def setUp(self):
        paddle.seed(123)
        paddle.framework.random._manual_program_seed(123)
        self.data = np.random.rand(1, 3, 224, 224).astype(np.float32)

Z
Zeng Jinle 已提交
618
    @dygraph_guard
W
Weilong Wu 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    def test_resnet_resnet50(self):
        with _test_eager_guard():
            model = resnet50(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet50(pretrained=False)
        data = paddle.to_tensor(self.data)
Z
Zeng Jinle 已提交
636
        data.stop_gradient = False
W
Weilong Wu 已提交
637
        out = model(data)
Z
Zeng Jinle 已提交
638
        preds = paddle.argmax(out, axis=1)
639 640
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
Z
Zeng Jinle 已提交
641 642 643 644 645 646
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))

647 648
        np.testing.assert_array_equal(egr_out, out)
        np.testing.assert_array_equal(egr_g_numpy, g_numpy)
Z
Zeng Jinle 已提交
649

W
Weilong Wu 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    @dygraph_guard
    def test_resnet_resnet101(self):
        with _test_eager_guard():
            model = resnet101(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet101(pretrained=False)
        data = paddle.to_tensor(self.data)
        data.stop_gradient = False
        out = model(data)
        preds = paddle.argmax(out, axis=1)
671 672
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
W
Weilong Wu 已提交
673
        target = paddle.sum(out * label_onehot, axis=1)
Z
Zeng Jinle 已提交
674

W
Weilong Wu 已提交
675 676 677
        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))
Z
Zeng Jinle 已提交
678

679 680
        np.testing.assert_array_equal(egr_out, out)
        np.testing.assert_array_equal(egr_g_numpy, g_numpy)
Z
Zeng Jinle 已提交
681 682


683
class TestDoubleGradBasics(TestCase):
684

685 686 687
    def test_matmul(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
688 689 690 691 692 693 694 695 696
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            grad_out = paddle.to_tensor(np.ones([3, 3]),
                                        stop_gradient=False,
                                        dtype='float32')
697 698

            out = paddle.matmul(x, y, False, False)
699 700 701
            new_x_g, new_y_g = paddle.grad([out], [x, y], [grad_out],
                                           retain_graph=True,
                                           create_graph=True)
702 703 704
            new_x_g.backward()

            out_ref = np.ones([3, 3]) * 12.0
705
            np.testing.assert_array_equal(out.numpy(), out_ref)
706 707 708

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
709 710
            np.testing.assert_array_equal(new_x_g.numpy(), new_x_g_ref)
            np.testing.assert_array_equal(new_y_g.numpy(), new_y_g_ref)
711 712

            x_grad_ref = np.ones([3, 3]) * 0.0
713
            np.testing.assert_array_equal(x.grad.numpy(), x_grad_ref)
714 715

            y_grad_ref = np.ones([3, 3]) * 3.0
716
            np.testing.assert_array_equal(y.grad.numpy(), y_grad_ref)
717 718

            grad_out_grad_ref = np.ones([3, 3]) * 6.0
719 720
            np.testing.assert_array_equal(grad_out.grad.numpy(),
                                          grad_out_grad_ref)
721 722


723 724
if __name__ == '__main__':
    unittest.main()