launch.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
71
from paddle.distributed.fleet import launch_utils
72

73
# TODO(danleifeng): Don't import * from a module
74 75
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
94
    base_group = parser.add_argument_group("Base Parameters")
95

96 97
    base_group.add_argument(
        "--log_dir",
98
        type=str,
99 100 101 102
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

103 104 105 106 107 108 109 110
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    base_group.add_argument(
        "--run_mode",
        type=str,
        default="collective",
        help="run mode of job, can be:collective/ps/ps-heter")

    base_group.add_argument(
        "--ascend_npus",
        type=str,
        default=None,
        help="It's for ascend npu training."
        "For example:"
        "--ascend_npus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
    )

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
146

147
    base_group.add_argument(
148 149 150 151 152 153 154
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")
182
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
183

184 185 186
    return parser.parse_args()


187
def get_cluster_from_args(args, device_mode, devices_per_proc):
188 189 190 191 192 193
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

194
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
195
        % (node_ip, node_ips)
196 197
    node_rank = node_ips.index(node_ip)

198
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
199 200 201 202 203
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
204
        free_ports = find_free_ports(len(devices_per_proc))
205 206 207 208 209
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
210
            start_port = int(os.environ.get('FLAGS_START_PORT'))
211

212 213 214
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
215

216 217 218
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
219 220
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
221 222 223 224


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
225
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
226
    trainers_num = cloud_utils.get_trainers_num()
227 228
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))
229 230 231 232

    cluster = None
    pod = None

233 234 235
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
236
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
237 238
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
239
        logger.debug("get cluster from cloud:{}".format(cluster))
240 241
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
242 243
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
244
        logger.debug("get cluster from args:{}".format(cluster))
245

246 247 248
    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
L
lilong12 已提交
249
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
250
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
251 252
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

253 254 255 256 257
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
258 259
        log_dir=args.log_dir,
        envs=global_envs)
260

261 262 263
    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))

264 265 266 267
    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
268 269
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
270 271 272 273
            break

        time.sleep(3)

274 275 276
    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)

277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
297 298 299 300 301 302 303 304 305 306
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

307
    ps_args = [
308 309
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
        '--workers', '--heter_workers', '--http_port'
310
    ]
311
    collective_args = ['--ips']
312

313
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
314 315 316 317 318 319 320 321

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
322 323 324 325 326 327

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

328
    if fluid.core.is_compiled_with_cuda():
329 330 331
        accelerators = fluid.core.get_cuda_device_count()
    elif fluid.core.is_compiled_with_ascend():
        accelerators = fluid.core.NPUDevice.get_device_count()
332
    elif fluid.core.is_compiled_with_xpu():
333
        accelerators = fluid.core.get_xpu_device_count()
334
    else:
335
        accelerators = 0
336

337 338
    if len(has_ps_args) > 0:
        logger.info(
339 340
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
341 342 343 344 345
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
346
    elif len(has_collective_args) > 0:
347 348
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
349
        return DistributeMode.COLLECTIVE
350
    else:
351 352
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
353
            logger.warning(
354
                "Not found distinct arguments and not compiled with cuda or xpu. Default use ps mode"
355 356 357 358
            )
            return DistributeMode.PS
        else:
            logger.warning(
359
                "Not found distinct arguments and compiled with cuda or xpu. Default use collective mode"
360 361
            )
            return DistributeMode.COLLECTIVE
362 363 364 365 366 367 368 369 370


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
    if distribute_mode == DistributeMode.COLLECTIVE:
371
        launch_collective(args)
372 373
    else:
        launch_ps(args, distribute_mode)
374 375 376 377


if __name__ == "__main__":
    launch()