multiclass_nms_op.cc 22.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/detection/nms_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
29 30 31
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MultiClassNMS");
D
dangqingqing 已提交
32
    auto box_dims = ctx->GetInputDim("BBoxes");
33
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
34
    auto score_size = score_dims.size();
35

36
    if (ctx->IsRuntime()) {
37 38 39 40 41
      PADDLE_ENFORCE_EQ(score_size == 2 || score_size == 3, true,
                        platform::errors::InvalidArgument(
                            "The rank of Input(Scores) must be 2 or 3"
                            ". But received rank = %d",
                            score_size));
42
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
X
xiaoting 已提交
43 44
                        platform::errors::InvalidArgument(
                            "The rank of Input(BBoxes) must be 3"
45
                            ". But received rank = %d",
X
xiaoting 已提交
46
                            box_dims.size()));
J
jerrywgz 已提交
47
      if (score_size == 3) {
48 49 50 51 52 53 54 55 56 57 58 59
        PADDLE_ENFORCE_EQ(
            box_dims[2] == 4 || box_dims[2] == 8 || box_dims[2] == 16 ||
                box_dims[2] == 24 || box_dims[2] == 32,
            true, platform::errors::InvalidArgument(
                      "The last dimension of Input"
                      "(BBoxes) must be 4 or 8, "
                      "represents the layout of coordinate "
                      "[xmin, ymin, xmax, ymax] or "
                      "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                      "8 points: [xi, yi] i= 1,2,...,8 or "
                      "12 points: [xi, yi] i= 1,2,...,12 or "
                      "16 points: [xi, yi] i= 1,2,...,16"));
J
jerrywgz 已提交
60 61
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
X
xiaoting 已提交
62 63 64 65 66 67
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input(BBoxes) must be equal to "
                "last dimension of Input(Scores), which represents the "
                "predicted bboxes."
                "But received box_dims[1](%s) != socre_dims[2](%s)",
                box_dims[1], score_dims[2]));
J
jerrywgz 已提交
68
      } else {
X
xiaoting 已提交
69 70
        PADDLE_ENFORCE_EQ(box_dims[2], 4,
                          platform::errors::InvalidArgument(
71 72
                              "The last dimension of Input"
                              "(BBoxes) must be 4. But received dimension = %d",
X
xiaoting 已提交
73
                              box_dims[2]));
74 75 76 77 78 79 80
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[1],
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input"
                "(BBoxes) must be equal to the 2nd dimension of Input(Scores). "
                "But received box dimension = %d, score dimension = %d",
                box_dims[1], score_dims[1]));
J
jerrywgz 已提交
81
      }
82
    }
83 84
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
85 86 87 88 89
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
90 91 92
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
93
  }
D
dangqingqing 已提交
94 95 96 97 98

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
99
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
100
        platform::CPUPlace());
D
dangqingqing 已提交
101
  }
102 103
};

104 105 106 107 108 109 110 111 112
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
                   const framework::Tensor& items, const int class_id,
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
113 114 115 116 117 118 119 120 121 122
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
123 124 125
  }
}

126
template <typename T>
D
dangqingqing 已提交
127
class MultiClassNMSKernel : public framework::OpKernel<T> {
128 129 130
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
131 132
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
133 134 135
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
136 137
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
138 139 140 141 142 143 144 145 146 147 148 149 150 151
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
152
      for (size_t k = 0; k < selected_indices->size(); ++k) {
153 154
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
155 156 157
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
158 159 160
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
161 162 163 164
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
165 166 167
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
168
          }
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
184
  void MultiClassNMS(const framework::ExecutionContext& ctx,
185
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
186
                     const int scores_size,
187 188
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
189 190 191
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
192
    bool normalized = ctx.Attr<bool>("normalized");
193 194
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
195
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
196
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
197 198

    int num_det = 0;
199 200 201 202 203 204 205 206 207 208 209 210 211

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
212
      }
213 214 215
      NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
              nms_top_k, &((*indices)[c]), normalized);
      if (scores_size == 2) {
J
jerrywgz 已提交
216 217
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
218
      num_det += (*indices)[c].size();
219 220
    }

221
    *num_nmsed_out = num_det;
222 223
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
224
      const T* sdata;
225
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
226
      for (const auto& it : *indices) {
227
        int label = it.first;
J
jerrywgz 已提交
228
        if (scores_size == 3) {
229
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
230
        } else {
231 232 233
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
234
        }
235
        const std::vector<int>& label_indices = it.second;
236
        for (size_t j = 0; j < label_indices.size(); ++j) {
237 238 239 240 241 242
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
243 244
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
245 246 247 248
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
249
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
250 251 252 253
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
254 255 256 257 258 259 260
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
261 262
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
263 264 265
    }
  }

J
jerrywgz 已提交
266 267
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
268
                        const std::map<int, std::vector<int>>& selected_indices,
269 270
                        const int scores_size, Tensor* outs,
                        int* oindices = nullptr, const int offset = 0) const {
J
jerrywgz 已提交
271
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
272 273
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
274 275 276 277
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
278 279 280
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
281 282 283
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
284 285 286
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
287
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
288 289 290 291 292
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
293

294
      for (size_t j = 0; j < indices.size(); ++j) {
295
        int idx = indices[j];
J
jerrywgz 已提交
296 297 298 299 300
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
301 302 303
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
304 305 306
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
307 308 309
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
310
        }
Y
Yipeng 已提交
311 312
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
313
        count++;
314 315 316 317 318
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
319 320
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
321
    auto* outs = ctx.Output<LoDTensor>("Out");
322 323
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
324
    auto score_dims = scores->dims();
325
    auto score_size = score_dims.size();
J
jerrywgz 已提交
326
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
327 328 329

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
330 331 332 333
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
334 335 336
    Tensor boxes_slice, scores_slice;
    int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    for (int i = 0; i < n; ++i) {
337
      std::map<int, std::vector<int>> indices;
338 339 340 341 342 343 344
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
        auto boxes_lod = boxes->lod().back();
345 346 347 348 349
        if (boxes_lod[i] == boxes_lod[i + 1]) {
          all_indices.push_back(indices);
          batch_starts.push_back(batch_starts.back());
          continue;
        }
350 351
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
352
      }
353 354 355 356
      MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
                    &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
357 358 359 360
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
361 362 363 364 365 366 367 368
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
369 370
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
371 372
      int offset = 0;
      int* oindices = nullptr;
373 374 375 376 377 378
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
379 380 381
          if (return_index) {
            offset = i * score_dims[2];
          }
382 383
        } else {
          auto boxes_lod = boxes->lod().back();
384
          if (boxes_lod[i] == boxes_lod[i + 1]) continue;
385 386
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
387 388 389
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
390
        }
391

392 393 394 395
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
396 397 398 399 400
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
401
          MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
402
                           score_dims.size(), &out, oindices, offset);
403 404 405 406 407 408
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);
409 410 411
    if (return_index) {
      index->set_lod(lod);
    }
412 413 414 415
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
416
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
417
 public:
Y
Yu Yang 已提交
418
  void Make() override {
D
dangqingqing 已提交
419
    AddInput("BBoxes",
J
jerrywgz 已提交
420 421
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
422
             "[N, M, 4 or 8 16 24 32] represents the "
423 424
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
425
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
426 427
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
428
    AddInput("Scores",
J
jerrywgz 已提交
429 430
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
431 432 433
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
434 435 436 437
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
438
    AddAttr<int>(
439
        "background_label",
翟飞跃 已提交
440
        "(int, default: 0) "
D
dangqingqing 已提交
441 442
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
443
        .SetDefault(0);
D
dangqingqing 已提交
444 445
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
446 447
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
448 449 450
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
451
                 "confidences after the filtering detections based on "
D
dangqingqing 已提交
452
                 "score_threshold");
453
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
454
                   "(float, default: 0.3) "
D
dangqingqing 已提交
455
                   "The threshold to be used in NMS.")
456 457 458
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
459
                   "The parameter for adaptive NMS.")
460
        .SetDefault(1.0);
D
dangqingqing 已提交
461 462 463 464
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
465
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
466
                  "(bool, default true) "
J
jerrywgz 已提交
467 468
                  "Whether detections are normalized.")
        .SetDefault(true);
469 470 471
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
472 473 474 475 476 477
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
478 479 480 481
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
482
This operator is to do multi-class non maximum suppression (NMS) on a batched
483
of boxes and scores.
D
dangqingqing 已提交
484 485 486 487 488 489
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
490
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
491 492
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
493 494 495
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
496
means there is no detected bbox for this image.
497 498 499 500
)DOC");
  }
};

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
      ctx->SetOutputDim("Index", {box_dims[1], 1});
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
520 521 522
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

538 539 540 541
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
542 543 544 545
REGISTER_OPERATOR(
    multiclass_nms, ops::MultiClassNMSOp, ops::MultiClassNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dangqingqing 已提交
546 547
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
548 549 550 551
REGISTER_OPERATOR(
    multiclass_nms2, ops::MultiClassNMS2Op, ops::MultiClassNMS2OpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
552 553
REGISTER_OP_CPU_KERNEL(multiclass_nms2, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);