multiclass_nms_op.cc 21.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
11
#include <glog/logging.h>
Y
Yi Wang 已提交
12
#include "paddle/fluid/framework/op_registry.h"
J
jerrywgz 已提交
13
#include "paddle/fluid/operators/detection/bbox_util.h"
Y
Yipeng 已提交
14
#include "paddle/fluid/operators/detection/poly_util.h"
15 16 17 18 19 20 21

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
22
class MultiClassNMSOp : public framework::OperatorWithKernel {
23 24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
29
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
30 31 32
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
33

D
dangqingqing 已提交
34
    auto box_dims = ctx->GetInputDim("BBoxes");
35
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
36
    auto score_size = score_dims.size();
37

38
    if (ctx->IsRuntime()) {
J
jerrywgz 已提交
39 40
      PADDLE_ENFORCE(score_size == 2 || score_size == 3,
                     "The rank of Input(Scores) must be 2 or 3");
41
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
J
jerrywgz 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                        "The rank of Input(BBoxes) must be 3");
      if (score_size == 3) {
        PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                           box_dims[2] == 16 || box_dims[2] == 24 ||
                           box_dims[2] == 32,
                       "The last dimension of Input(BBoxes) must be 4 or 8, "
                       "represents the layout of coordinate "
                       "[xmin, ymin, xmax, ymax] or "
                       "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                       "8 points: [xi, yi] i= 1,2,...,8 or "
                       "12 points: [xi, yi] i= 1,2,...,12 or "
                       "16 points: [xi, yi] i= 1,2,...,16");
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
            "The 2nd dimension of Input(BBoxes) must be equal to "
            "last dimension of Input(Scores), which represents the "
            "predicted bboxes.");
      } else {
        PADDLE_ENFORCE(box_dims[2] == 4,
                       "The last dimension of Input(BBoxes) must be 4");
        PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
                          "The 2nd dimension of Input(BBoxes)"
                          "must be equal to the 2nd dimension"
                          " of Input(Scores)");
      }
67
    }
68 69
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
70 71 72 73 74
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
75
  }
D
dangqingqing 已提交
76 77 78 79 80

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
81
        ctx.Input<framework::LoDTensor>("Scores")->type(),
82
        platform::CPUPlace());
D
dangqingqing 已提交
83
  }
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
105
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
106 107 108 109 110
    sorted_indices->resize(top_k);
  }
}

template <class T>
111
static inline T BBoxArea(const T* box, const bool normalized) {
112
  if (box[2] < box[0] || box[3] < box[1]) {
D
dangqingqing 已提交
113 114 115
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
116 117 118 119 120 121
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
D
dangqingqing 已提交
122
      // If coordinate values are not within range [0, 1].
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
J
jerrywgz 已提交
139 140 141 142 143 144
    T inter_w = inter_xmax - inter_xmin;
    T inter_h = inter_ymax - inter_ymin;
    if (!normalized) {
      inter_w += 1;
      inter_h += 1;
    }
145 146 147 148 149 150 151
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

Y
Yipeng 已提交
152 153 154 155 156 157 158
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
          const bool normalized) {
  T bbox1_area = PolyArea<T>(box1, box_size, normalized);
  T bbox2_area = PolyArea<T>(box2, box_size, normalized);
  T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
  if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
J
jerrywgz 已提交
159
    // If coordinate values are invalid
Y
Yipeng 已提交
160 161 162 163 164 165 166
    // if area size <= 0,  return 0.
    return T(0.);
  } else {
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

167
template <typename T>
D
dangqingqing 已提交
168
class MultiClassNMSKernel : public framework::OpKernel<T> {
169 170 171
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
172 173
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
174 175 176
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
177 178
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
179 180 181 182 183 184 185 186 187 188 189 190 191 192
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
193
      for (size_t k = 0; k < selected_indices->size(); ++k) {
194 195
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
196 197 198
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
199 200 201
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
202 203 204 205
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
206 207 208
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
209
          }
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
225
  void MultiClassNMS(const framework::ExecutionContext& ctx,
226
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
227
                     const int scores_size,
228 229
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
230 231 232
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
233
    bool normalized = ctx.Attr<bool>("normalized");
234 235
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
236
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
237
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
238 239

    int num_det = 0;
J
jerrywgz 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    int64_t box_num = 0, class_num = 0, predict_dim = 0;
    if (scores_size == 3) {
      class_num = scores.dims()[0];
      predict_dim = scores.dims()[1];
      for (int64_t c = 0; c < class_num; ++c) {
        if (c == background_label) continue;
        Tensor score = scores.Slice(c, c + 1);
        NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta,
                nms_top_k, &((*indices)[c]), normalized);
        num_det += (*indices)[c].size();
      }
    } else {
      box_num = scores.dims()[0];
      class_num = scores.dims()[1];
      Tensor score;
      score.Resize({box_num, 1});
      Tensor bbox;
      bbox.Resize({box_num, 4});
      for (int64_t c = 0; c < class_num; ++c) {
        if (c == background_label) continue;
        SliceOneClass<T>(dev_ctx, scores, c, &score);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox);
        NMSFast(bbox, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
                &((*indices)[c]), normalized);
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
        num_det += (*indices)[c].size();
      }
267 268
    }

269
    *num_nmsed_out = num_det;
270 271
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
272
      const T* sdata;
273
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
274
      for (const auto& it : *indices) {
275
        int label = it.first;
J
jerrywgz 已提交
276 277 278 279 280 281 282 283
        if (scores_size == 3) {
          sdata = scores_data + label * predict_dim;
        } else {
          Tensor score;
          score.Resize({box_num, 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score);
          sdata = score.data<T>();
        }
284
        const std::vector<int>& label_indices = it.second;
285
        for (size_t j = 0; j < label_indices.size(); ++j) {
286 287 288 289 290 291
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
292 293
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
294 295 296 297
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
298
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
299 300 301 302
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
303 304 305 306 307 308 309
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
310 311
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
312 313 314
    }
  }

J
jerrywgz 已提交
315 316
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
317
                        const std::map<int, std::vector<int>>& selected_indices,
J
jerrywgz 已提交
318 319
                        const int scores_size, Tensor* outs) const {
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
320 321
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
322 323 324 325
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
326 327 328
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
329 330 331
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
332 333 334
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
335
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
336 337 338 339 340
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
341
      for (size_t j = 0; j < indices.size(); ++j) {
342
        int idx = indices[j];
J
jerrywgz 已提交
343 344 345 346 347 348 349 350 351
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
        }
Y
Yipeng 已提交
352 353
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
354
        count++;
355 356 357 358 359
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
360 361
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
362 363 364 365
    auto* outs = ctx.Output<LoDTensor>("Out");

    auto score_dims = scores->dims();
    int64_t class_num = score_dims[1];
J
jerrywgz 已提交
366
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
367 368 369

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
370 371 372 373 374 375 376
    int64_t batch_size = score_dims[0];
    int64_t predict_dim = 0;
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
    if (score_dims.size() == 3) {
      predict_dim = score_dims[2];
377 378 379
      for (int64_t i = 0; i < batch_size; ++i) {
        Tensor ins_score = scores->Slice(i, i + 1);
        ins_score.Resize({class_num, predict_dim});
380 381 382 383

        Tensor ins_boxes = boxes->Slice(i, i + 1);
        ins_boxes.Resize({predict_dim, box_dim});

J
jerrywgz 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        std::map<int, std::vector<int>> indices;
        MultiClassNMS(ctx, ins_score, ins_boxes, score_dims.size(), &indices,
                      &num_nmsed_out);
        all_indices.push_back(indices);
        batch_starts.push_back(batch_starts.back() + num_nmsed_out);
      }
    } else {
      auto boxes_lod = boxes->lod().back();
      int64_t n = static_cast<int64_t>(boxes_lod.size() - 1);
      for (int i = 0; i < n; ++i) {
        Tensor boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
        Tensor scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        std::map<int, std::vector<int>> indices;
        MultiClassNMS(ctx, scores_slice, boxes_slice, score_dims.size(),
                      &indices, &num_nmsed_out);
        all_indices.push_back(indices);
        batch_starts.push_back(batch_starts.back() + num_nmsed_out);
      }
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
      T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
      od[0] = -1;
408
      batch_starts = {0, 1};
J
jerrywgz 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
      if (score_dims.size() == 3) {
        for (int64_t i = 0; i < batch_size; ++i) {
          Tensor ins_score = scores->Slice(i, i + 1);
          ins_score.Resize({class_num, predict_dim});

          Tensor ins_boxes = boxes->Slice(i, i + 1);
          ins_boxes.Resize({predict_dim, box_dim});

          int64_t s = batch_starts[i];
          int64_t e = batch_starts[i + 1];
          if (e > s) {
            Tensor out = outs->Slice(s, e);
            MultiClassOutput(dev_ctx, ins_score, ins_boxes, all_indices[i],
                             score_dims.size(), &out);
          }
        }
      } else {
        auto boxes_lod = boxes->lod().back();
        int64_t n = static_cast<int64_t>(boxes_lod.size() - 1);
        for (int i = 0; i < n; ++i) {
          Tensor boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
          Tensor scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          int64_t s = batch_starts[i];
          int64_t e = batch_starts[i + 1];
          if (e > s) {
            Tensor out = outs->Slice(s, e);
            MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
                             score_dims.size(), &out);
          }
440 441 442 443 444 445 446 447 448 449 450
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
451
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
452
 public:
Y
Yu Yang 已提交
453
  void Make() override {
D
dangqingqing 已提交
454
    AddInput("BBoxes",
J
jerrywgz 已提交
455 456
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
457
             "[N, M, 4 or 8 16 24 32] represents the "
458 459
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
460 461
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
             "2. (LoDTensor) A 3-D Tensor with shape [N, M, 4]");
D
dangqingqing 已提交
462
    AddInput("Scores",
J
jerrywgz 已提交
463 464
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
465 466 467
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
J
jerrywgz 已提交
468 469 470 471
             " Please note, M is equal to the 1st dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape"
             "[N, num_class]. N is the number of bbox and"
             "M represents the scores of bboxes in each class.");
D
dangqingqing 已提交
472
    AddAttr<int>(
473
        "background_label",
474
        "(int, defalut: 0) "
D
dangqingqing 已提交
475 476
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
477
        .SetDefault(0);
D
dangqingqing 已提交
478 479
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
480 481
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
482 483 484 485 486
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences aftern the filtering detections based on "
                 "score_threshold");
487 488
    AddAttr<float>("nms_threshold",
                   "(float, defalut: 0.3) "
D
dangqingqing 已提交
489
                   "The threshold to be used in NMS.")
490 491 492
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
493
                   "The parameter for adaptive NMS.")
494
        .SetDefault(1.0);
D
dangqingqing 已提交
495 496 497 498
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
499 500 501 502
    AddAttr<bool>("normalized",
                  "(bool, default false) "
                  "Whether detections are normalized.")
        .SetDefault(true);
503 504 505
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
506 507 508 509 510 511
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
512 513 514 515
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
516
This operator is to do multi-class non maximum suppression (NMS) on a batched
517
of boxes and scores.
D
dangqingqing 已提交
518 519 520 521 522 523
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
524
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
525 526
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
527 528 529 530 531 532
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
533 534 535 536 537 538 539 540
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dangqingqing 已提交
541 542
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
                  ops::MultiClassNMSOpMaker,
543
                  paddle::framework::EmptyGradOpMaker);
D
dangqingqing 已提交
544 545
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);