multiclass_nms_op.cc 16.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
Y
Yipeng 已提交
12

13 14
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
Y
Yipeng 已提交
16
#include "paddle/fluid/operators/detection/poly_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
32 33 34
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
35

D
dangqingqing 已提交
36
    auto box_dims = ctx->GetInputDim("BBoxes");
37 38
    auto score_dims = ctx->GetInputDim("Scores");

39 40
    PADDLE_ENFORCE_EQ(box_dims.size(), 3,
                      "The rank of Input(BBoxes) must be 3.");
41 42
    PADDLE_ENFORCE_EQ(score_dims.size(), 3,
                      "The rank of Input(Scores) must be 3.");
Y
Yipeng 已提交
43 44 45 46 47 48 49 50 51
    PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 || box_dims[2] == 16 ||
                       box_dims[2] == 24 || box_dims[2] == 32,
                   "The 2nd dimension of Input(BBoxes) must be 4 or 8, "
                   "represents the layout of coordinate "
                   "[xmin, ymin, xmax, ymax] or "
                   "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                   "8 points: [xi, yi] i= 1,2,...,8 or "
                   "12 points: [xi, yi] i= 1,2,...,12 or "
                   "16 points: [xi, yi] i= 1,2,...,16");
52
    PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
D
dangqingqing 已提交
53 54 55
                      "The 1st dimensiong of Input(BBoxes) must be equal to "
                      "3rd dimension of Input(Scores), which represents the "
                      "predicted bboxes.");
56 57 58

    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
Y
Yipeng 已提交
59
    ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
60
  }
D
dangqingqing 已提交
61 62 63 64 65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<framework::LoDTensor>("Scores")->type()),
68
        platform::CPUPlace());
D
dangqingqing 已提交
69
  }
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
91
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
92 93 94 95 96
    sorted_indices->resize(top_k);
  }
}

template <class T>
97
static inline T BBoxArea(const T* box, const bool normalized) {
98
  if (box[2] < box[0] || box[3] < box[1]) {
D
dangqingqing 已提交
99 100 101
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
102 103 104 105 106 107
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
D
dangqingqing 已提交
108
      // If coordinate values are not within range [0, 1].
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

Y
Yipeng 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
          const bool normalized) {
  T bbox1_area = PolyArea<T>(box1, box_size, normalized);
  T bbox2_area = PolyArea<T>(box2, box_size, normalized);
  T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
  if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
    // If coordinate values are is invalid
    // if area size <= 0,  return 0.
    return T(0.);
  } else {
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

149
template <typename T>
D
dangqingqing 已提交
150
class MultiClassNMSKernel : public framework::OpKernel<T> {
151 152 153 154 155 156 157
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
               const int64_t top_k, std::vector<int>* selected_indices) const {
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
158 159
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
160 161 162 163 164 165 166 167 168 169 170 171 172 173
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
174
      for (size_t k = 0; k < selected_indices->size(); ++k) {
175 176
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
177 178 179 180
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
            overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
181
                                        bbox_data + kept_idx * box_size, true);
Y
Yipeng 已提交
182 183 184 185 186 187 188 189
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
            overlap =
                PolyIoU<T>(bbox_data + idx * box_size,
                           bbox_data + kept_idx * box_size, box_size, true);
          }
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
205
  void MultiClassNMS(const framework::ExecutionContext& ctx,
206
                     const Tensor& scores, const Tensor& bboxes,
207 208
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
209 210 211
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
212 213
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
214
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
215 216 217 218 219 220 221 222

    int64_t class_num = scores.dims()[0];
    int64_t predict_dim = scores.dims()[1];
    int num_det = 0;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      Tensor score = scores.Slice(c, c + 1);
      NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
223 224
              &((*indices)[c]));
      num_det += (*indices)[c].size();
225 226
    }

227
    *num_nmsed_out = num_det;
228 229 230
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
231
      for (const auto& it : *indices) {
232 233 234
        int label = it.first;
        const T* sdata = scores_data + label * predict_dim;
        const std::vector<int>& label_indices = it.second;
235
        for (size_t j = 0; j < label_indices.size(); ++j) {
236 237 238 239 240 241 242
          int idx = label_indices[j];
          PADDLE_ENFORCE_LT(idx, predict_dim);
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
243 244
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
245 246 247 248
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
249
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
250 251 252 253
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
254 255
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
256 257 258
    }
  }

D
dangqingqing 已提交
259
  void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
260
                        const std::map<int, std::vector<int>>& selected_indices,
261
                        Tensor* outs) const {
Y
Yipeng 已提交
262 263 264
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
    int64_t out_dim = bboxes.dims()[1] + 2;
265 266 267 268 269 270 271 272
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();

    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
      const T* sdata = scores_data + label * predict_dim;
D
dangqingqing 已提交
273
      const std::vector<int>& indices = it.second;
274
      for (size_t j = 0; j < indices.size(); ++j) {
275
        int idx = indices[j];
Y
Yipeng 已提交
276 277 278 279 280
        const T* bdata = bboxes_data + idx * box_size;
        odata[count * out_dim] = label;           // label
        odata[count * out_dim + 1] = sdata[idx];  // score
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
281
        count++;
282 283 284 285 286
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
D
dangqingqing 已提交
287
    auto* boxes = ctx.Input<Tensor>("BBoxes");
288 289 290 291 292
    auto* scores = ctx.Input<Tensor>("Scores");
    auto* outs = ctx.Output<LoDTensor>("Out");

    auto score_dims = scores->dims();

D
dangqingqing 已提交
293
    int64_t batch_size = score_dims[0];
294 295
    int64_t class_num = score_dims[1];
    int64_t predict_dim = score_dims[2];
296
    int64_t box_dim = boxes->dims()[2];
Y
Yipeng 已提交
297
    int64_t out_dim = boxes->dims()[2] + 2;
298 299 300 301 302 303

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
    for (int64_t i = 0; i < batch_size; ++i) {
      Tensor ins_score = scores->Slice(i, i + 1);
      ins_score.Resize({class_num, predict_dim});
304 305 306 307

      Tensor ins_boxes = boxes->Slice(i, i + 1);
      ins_boxes.Resize({predict_dim, box_dim});

308 309
      std::map<int, std::vector<int>> indices;
      int num_nmsed_out = 0;
310
      MultiClassNMS(ctx, ins_score, ins_boxes, &indices, &num_nmsed_out);
311 312 313 314 315 316
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
317 318
      T* od = outs->mutable_data<T>({1}, ctx.GetPlace());
      od[0] = -1;
319
    } else {
Y
Yipeng 已提交
320
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
321 322 323
      for (int64_t i = 0; i < batch_size; ++i) {
        Tensor ins_score = scores->Slice(i, i + 1);
        ins_score.Resize({class_num, predict_dim});
324 325 326 327

        Tensor ins_boxes = boxes->Slice(i, i + 1);
        ins_boxes.Resize({predict_dim, box_dim});

328 329 330 331
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
332
          MultiClassOutput(ins_score, ins_boxes, all_indices[i], &out);
333 334 335 336 337 338 339 340 341 342 343
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
344
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
345
 public:
Y
Yu Yang 已提交
346
  void Make() override {
D
dangqingqing 已提交
347
    AddInput("BBoxes",
Y
Yipeng 已提交
348 349
             "(Tensor) A 3-D Tensor with shape "
             "[N, M, 4 or 8 16 24 32] represents the "
350 351
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
Y
Yipeng 已提交
352
             "[xmin, ymin, xmax, ymax], when box size equals to 4.");
D
dangqingqing 已提交
353 354
    AddInput("Scores",
             "(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
355 356 357 358
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
             " Please note, M is equal to the 1st dimension of BBoxes. ");
D
dangqingqing 已提交
359
    AddAttr<int>(
360
        "background_label",
361
        "(int, defalut: 0) "
D
dangqingqing 已提交
362 363
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
364
        .SetDefault(0);
D
dangqingqing 已提交
365 366
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
367 368
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
369 370 371 372 373
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences aftern the filtering detections based on "
                 "score_threshold");
374 375
    AddAttr<float>("nms_threshold",
                   "(float, defalut: 0.3) "
D
dangqingqing 已提交
376
                   "The threshold to be used in NMS.")
377 378 379
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
380
                   "The parameter for adaptive NMS.")
381
        .SetDefault(1.0);
D
dangqingqing 已提交
382 383 384 385
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
386 387 388
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
389 390 391 392 393 394
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
395 396 397 398
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
399
This operator is to do multi-class non maximum suppression (NMS) on a batched
400 401
of boxes and scores.

D
dangqingqing 已提交
402 403 404 405 406 407 408
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.

409
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
410
per image if keep_top_k is larger than -1.
411

D
dangqingqing 已提交
412
This operator support multi-class and batched inputs. It applying NMS
413 414 415 416 417 418
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
419 420 421 422 423 424 425 426
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dangqingqing 已提交
427 428
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
                  ops::MultiClassNMSOpMaker,
429
                  paddle::framework::EmptyGradOpMaker);
D
dangqingqing 已提交
430 431
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);