fc_gru_fuse_pass.cc 10.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
16

T
tensor-tang 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/op_version_registry.h"
L
lidanqing 已提交
20
#include "paddle/fluid/string/pretty_log.h"
21 22 23 24 25 26
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
27 28 29 30
namespace paddle {
namespace framework {
namespace ir {

W
wanghuancoder 已提交
31 32
class Node;

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
MulGRUFusePass::MulGRUFusePass() {
  AddOpCompat(OpCompat("gru"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("H0")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("Weight")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddOutput("BatchGate")
      .IsTensor()
      .End()
      .AddOutput("BatchResetHiddenPrev")
      .IsTensor()
      .End()
      .AddOutput("BatchHidden")
      .IsTensor()
      .End()
      .AddOutput("Hidden")
      .IsTensor()
      .End()
      .AddAttr("activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("gate_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("is_reverse")
      .IsType<bool>()
      .End()
      .AddAttr("origin_mode")
      .IsType<bool>()
      .IsOptional()
      .End();
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(1)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();
}

FCGRUFusePass::FCGRUFusePass() {
  AddOpCompat(OpCompat("gru"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("H0")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("Weight")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddOutput("BatchGate")
      .IsTensor()
      .End()
      .AddOutput("BatchResetHiddenPrev")
      .IsTensor()
      .End()
      .AddOutput("BatchHidden")
      .IsTensor()
      .End()
      .AddOutput("Hidden")
      .IsTensor()
      .End()
      .AddAttr("activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("gate_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("is_reverse")
      .IsType<bool>()
      .End()
      .AddAttr("origin_mode")
      .IsType<bool>()
      .IsOptional()
      .End();
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(1)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();
  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumGE(-1)
      .End();
}

int FCGRUFusePass::BuildFusion(Graph* graph, const std::string& name_scope,
                               Scope* scope, bool with_fc_bias) const {
T
tensor-tang 已提交
164 165 166
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

Y
Yan Chunwei 已提交
167 168 169
  PDNode* x =
      pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();

A
Adam 已提交
170 171
  // Create pattern.
  patterns::FC fc_pattern(pattern, name_scope);
172
  auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
Y
Yan Chunwei 已提交
173
  fc_out->AsIntermediate();  // fc_out is a tmp var, will be removed after fuse.
A
Adam 已提交
174 175

  patterns::GRU gru_pattern(pattern, name_scope);
Y
Yan Chunwei 已提交
176
  gru_pattern(fc_out);
T
tensor-tang 已提交
177 178

  // Create New OpDesc
179 180 181
  auto gru_creator = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
                         Node* bias, Node* hidden, Node* fc_bias,
                         const bool use_mkldnn) {
T
tensor-tang 已提交
182 183
    OpDesc op_desc;
    op_desc.SetType("fusion_gru");
T
tensor-tang 已提交
184 185

#define NEW_NAME(x) name_scope + "/at." #x ".new"
Y
Yan Chunwei 已提交
186
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
T
tensor-tang 已提交
187 188 189
    SET_IN(X, x);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
A
Adam 已提交
190
    SET_IN(Bias, bias);
T
tensor-tang 已提交
191
#undef SET_IN
A
Adam 已提交
192
    // TODO(grygielski): Add H0 to the pass
T
tensor-tang 已提交
193
    op_desc.SetInput("H0", {});
Y
Yan Chunwei 已提交
194 195
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
A
Adam 已提交
196 197
    op_desc.SetAttr("origin_mode",
                    gru->Op()->GetAttrIfExists<bool>("origin_mode"));
T
tensor-tang 已提交
198 199
    // TODO(TJ): This should be a option for infer
    op_desc.SetAttr("use_seq", true);
200
    op_desc.SetAttr("use_mkldnn", use_mkldnn);
A
Adam 已提交
201 202
    op_desc.SetAttr("activation", gru->Op()->GetAttr("activation"));
    op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation"));
T
tensor-tang 已提交
203 204 205 206 207 208 209 210 211

#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
    SET_IMTERMEDIATE_OUT(ReorderedH0);
    SET_IMTERMEDIATE_OUT(XX);
    SET_IMTERMEDIATE_OUT(BatchedInput);
    SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT

    auto* op = graph->CreateOpNode(&op_desc);
T
tensor-tang 已提交
212
    if (with_fc_bias) {
A
Adam 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      auto* gru_bias_var = scope->FindVar(bias->Name());
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
      PADDLE_ENFORCE_NE(
          gru_bias_var, nullptr,
          platform::errors::NotFound("GRU bias var has not been found."));
      PADDLE_ENFORCE_NE(
          fc_bias_var, nullptr,
          platform::errors::NotFound("FC bias var has not been found."));

      auto* gru_bias_tensor = gru_bias_var->GetMutable<LoDTensor>();
      auto* fc_bias_tensor = fc_bias_var->GetMutable<LoDTensor>();
      PADDLE_ENFORCE_EQ(
          gru_bias_tensor->numel(), fc_bias_tensor->numel(),
          platform::errors::PreconditionNotMet(
              "GRU and FC biases have to have equal number of elements."));

      auto gru_bias_data =
          gru_bias_tensor->mutable_data<float>(platform::CPUPlace());
      auto* fc_bias_data = fc_bias_tensor->data<float>();

      // Recompute GRU bias
      for (int i = 0; i < gru_bias_tensor->numel(); ++i) {
        gru_bias_data[i] += fc_bias_data[i];
T
tensor-tang 已提交
236 237 238 239
      }
    }
#undef GET_NODE

240 241 242 243 244 245
#define NEW_IMTERMEDIATE_OUT(key)                \
  VarDesc key(NEW_NAME(key));                    \
  key.SetPersistable(false);                     \
  auto* key##_node = graph->CreateVarNode(&key); \
  IR_NODE_LINK_TO(op, key##_node);

T
tensor-tang 已提交
246 247 248 249 250 251
    NEW_IMTERMEDIATE_OUT(ReorderedH0);
    NEW_IMTERMEDIATE_OUT(XX);
    NEW_IMTERMEDIATE_OUT(BatchedInput);
    NEW_IMTERMEDIATE_OUT(BatchedOut);
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
T
tensor-tang 已提交
252

Y
Yan Chunwei 已提交
253 254 255
    IR_NODE_LINK_TO(x, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
A
Adam 已提交
256
    IR_NODE_LINK_TO(bias, op);
Y
Yan Chunwei 已提交
257
    IR_NODE_LINK_TO(op, hidden);
T
tensor-tang 已提交
258 259 260 261 262 263 264
    // h0?
    return op;
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
265 266 267 268
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
Y
Yan Chunwei 已提交
269 270 271 272 273 274 275
    auto* x_n = subgraph.at(x);
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
T
tensor-tang 已提交
276
    // nodes need be removed
Y
Yan Chunwei 已提交
277
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
278 279 280
    GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev,
                              gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern);
T
tensor-tang 已提交
281

282 283 284 285 286
    // TODO(wilber): Support origin_mode=True.
    if (gru->Op()->GetAttrIfExists<bool>("origin_mode") == true) {
      LOG(INFO) << "fc_gru_fuse_pass not supported when origin_mode=True.";
      return;
    }
287 288 289 290 291
    const bool use_mkldnn =
        (mul->Op()->GetAttrIfExists<bool>("use_mkldnn") &&
         gru->Op()->GetAttrIfExists<std::string>("activation") == "tanh" &&
         gru->Op()->GetAttrIfExists<std::string>("gate_activation") ==
             "sigmoid");
292

T
tensor-tang 已提交
293
    if (with_fc_bias) {
Y
Yan Chunwei 已提交
294 295 296
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
297
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
298

299
      gru_creator(gru, x_n, w, Weight, Bias, Hidden, fc_bias, use_mkldnn);
T
tensor-tang 已提交
300 301
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
302
          {mul, gru, elementwise_add, fc_out, mul_out, BatchGate,
Y
Yan Chunwei 已提交
303
           BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
304 305
      GraphSafeRemoveNodes(graph, marked_nodes);
    } else {
306
      gru_creator(gru, x_n, w, Weight, Bias, Hidden, nullptr, use_mkldnn);
T
tensor-tang 已提交
307
      // Remove unneeded nodes.
T
tensor-tang 已提交
308
      std::unordered_set<const Node*> marked_nodes(
Y
Yan Chunwei 已提交
309
          {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
310 311 312 313 314 315 316 317 318 319 320 321
      GraphSafeRemoveNodes(graph, marked_nodes);
    }
#undef GET_NODE

    ++fusion_count;
  };

  gpd(graph, handler);

  return fusion_count;
}

322 323
void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
324

325 326
  int fusion_count = MulGRUFusePass::BuildFusion(
      graph, name_scope_, param_scope(), false /*with_fc_bias*/);
T
tensor-tang 已提交
327 328 329 330

  AddStatis(fusion_count);
}

331 332
void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
333

334 335
  int fusion_count = FCGRUFusePass::BuildFusion(
      graph, name_scope_, param_scope(), true /*with_fc_bias*/);
T
tensor-tang 已提交
336 337

  AddStatis(fusion_count);
338 339 340
  if (!Has("disable_logs") || !Get<bool>("disable_logs"))
    string::PrettyLogDetail("---    fused %d pairs of fc gru patterns",
                            fusion_count);
T
tensor-tang 已提交
341 342 343 344 345 346
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
347 348
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);
349 350 351 352 353
REGISTER_PASS_CAPABILITY(mul_gru_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
            .EQ("gru", 0)
354
            .LE("fusion_gru", 1));
355 356 357 358
REGISTER_PASS_CAPABILITY(fc_gru_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
359
            .LE("elementwise_add", 1)
360
            .EQ("gru", 0)
361
            .LE("fusion_gru", 1));