fc_gru_fuse_pass.cc 6.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
#include <string>
17
#include <unordered_set>
T
tensor-tang 已提交
18 19 20 21 22 23
#include "paddle/fluid/framework/lod_tensor.h"

namespace paddle {
namespace framework {
namespace ir {

T
tensor-tang 已提交
24 25
static int BuildFusion(Graph* graph, const std::string& name_scope,
                       Scope* scope, bool with_fc_bias) {
T
tensor-tang 已提交
26 27 28
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

Y
Yan Chunwei 已提交
29 30 31
  PDNode* x =
      pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();

A
Adam 已提交
32 33
  // Create pattern.
  patterns::FC fc_pattern(pattern, name_scope);
34
  auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
Y
Yan Chunwei 已提交
35
  fc_out->AsIntermediate();  // fc_out is a tmp var, will be removed after fuse.
A
Adam 已提交
36 37

  patterns::GRU gru_pattern(pattern, name_scope);
Y
Yan Chunwei 已提交
38
  gru_pattern(fc_out);
T
tensor-tang 已提交
39 40

  // Create New OpDesc
Y
Yan Chunwei 已提交
41 42
  auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
                         Node* bias, Node* hidden, Node* fc_bias) {
T
tensor-tang 已提交
43 44
    OpDesc op_desc;
    op_desc.SetType("fusion_gru");
T
tensor-tang 已提交
45 46

#define NEW_NAME(x) name_scope + "/at." #x ".new"
Y
Yan Chunwei 已提交
47
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
T
tensor-tang 已提交
48 49 50
    SET_IN(X, x);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
A
Adam 已提交
51
    SET_IN(Bias, bias);
T
tensor-tang 已提交
52
#undef SET_IN
A
Adam 已提交
53
    // TODO(grygielski): Add H0 to the pass
T
tensor-tang 已提交
54
    op_desc.SetInput("H0", {});
Y
Yan Chunwei 已提交
55 56
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
A
Adam 已提交
57 58
    op_desc.SetAttr("origin_mode",
                    gru->Op()->GetAttrIfExists<bool>("origin_mode"));
T
tensor-tang 已提交
59 60
    // TODO(TJ): This should be a option for infer
    op_desc.SetAttr("use_seq", true);
A
Adam 已提交
61 62
    op_desc.SetAttr("activation", gru->Op()->GetAttr("activation"));
    op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation"));
T
tensor-tang 已提交
63 64 65 66 67 68 69 70 71

#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
    SET_IMTERMEDIATE_OUT(ReorderedH0);
    SET_IMTERMEDIATE_OUT(XX);
    SET_IMTERMEDIATE_OUT(BatchedInput);
    SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT

    auto* op = graph->CreateOpNode(&op_desc);
T
tensor-tang 已提交
72
    if (with_fc_bias) {
A
Adam 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
      auto* gru_bias_var = scope->FindVar(bias->Name());
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
      PADDLE_ENFORCE_NE(
          gru_bias_var, nullptr,
          platform::errors::NotFound("GRU bias var has not been found."));
      PADDLE_ENFORCE_NE(
          fc_bias_var, nullptr,
          platform::errors::NotFound("FC bias var has not been found."));

      auto* gru_bias_tensor = gru_bias_var->GetMutable<LoDTensor>();
      auto* fc_bias_tensor = fc_bias_var->GetMutable<LoDTensor>();
      PADDLE_ENFORCE_EQ(
          gru_bias_tensor->numel(), fc_bias_tensor->numel(),
          platform::errors::PreconditionNotMet(
              "GRU and FC biases have to have equal number of elements."));

      auto gru_bias_data =
          gru_bias_tensor->mutable_data<float>(platform::CPUPlace());
      auto* fc_bias_data = fc_bias_tensor->data<float>();

      // Recompute GRU bias
      for (int i = 0; i < gru_bias_tensor->numel(); ++i) {
        gru_bias_data[i] += fc_bias_data[i];
T
tensor-tang 已提交
96 97 98 99
      }
    }
#undef GET_NODE

100 101 102 103 104 105
#define NEW_IMTERMEDIATE_OUT(key)                \
  VarDesc key(NEW_NAME(key));                    \
  key.SetPersistable(false);                     \
  auto* key##_node = graph->CreateVarNode(&key); \
  IR_NODE_LINK_TO(op, key##_node);

T
tensor-tang 已提交
106 107 108 109 110 111
    NEW_IMTERMEDIATE_OUT(ReorderedH0);
    NEW_IMTERMEDIATE_OUT(XX);
    NEW_IMTERMEDIATE_OUT(BatchedInput);
    NEW_IMTERMEDIATE_OUT(BatchedOut);
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
T
tensor-tang 已提交
112

Y
Yan Chunwei 已提交
113 114 115
    IR_NODE_LINK_TO(x, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
A
Adam 已提交
116
    IR_NODE_LINK_TO(bias, op);
Y
Yan Chunwei 已提交
117
    IR_NODE_LINK_TO(op, hidden);
T
tensor-tang 已提交
118 119 120 121 122 123 124
    // h0?
    return op;
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Y
Yan Chunwei 已提交
125 126 127
    auto* x_n = subgraph.at(x);
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
128
    GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
129 130 131 132
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
T
tensor-tang 已提交
133
    // nodes need be removed
Y
Yan Chunwei 已提交
134
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
135 136 137
    GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev,
                              gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern);
T
tensor-tang 已提交
138 139

    if (with_fc_bias) {
Y
Yan Chunwei 已提交
140 141 142 143 144
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);

      gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias);
T
tensor-tang 已提交
145 146
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
147
          {mul, gru, elementwise_add, fc_out, mul_out, BatchGate,
Y
Yan Chunwei 已提交
148
           BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
149 150
      GraphSafeRemoveNodes(graph, marked_nodes);
    } else {
Y
Yan Chunwei 已提交
151
      gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr);
T
tensor-tang 已提交
152
      // Remove unneeded nodes.
T
tensor-tang 已提交
153
      std::unordered_set<const Node*> marked_nodes(
Y
Yan Chunwei 已提交
154
          {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165 166
      GraphSafeRemoveNodes(graph, marked_nodes);
    }
#undef GET_NODE

    ++fusion_count;
  };

  gpd(graph, handler);

  return fusion_count;
}

167 168
void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
169

170 171
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
T
tensor-tang 已提交
172 173 174 175

  AddStatis(fusion_count);
}

176 177
void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
178

179 180
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
T
tensor-tang 已提交
181 182 183 184 185 186 187 188

  AddStatis(fusion_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
189 190
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);