fc_gru_fuse_pass.cc 7.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
16

T
tensor-tang 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/op_version_registry.h"
T
tensor-tang 已提交
20

21 22 23 24 25 26
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
27 28 29 30
namespace paddle {
namespace framework {
namespace ir {

W
wanghuancoder 已提交
31 32
class Node;

T
tensor-tang 已提交
33 34
static int BuildFusion(Graph* graph, const std::string& name_scope,
                       Scope* scope, bool with_fc_bias) {
T
tensor-tang 已提交
35 36 37
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

Y
Yan Chunwei 已提交
38 39 40
  PDNode* x =
      pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();

A
Adam 已提交
41 42
  // Create pattern.
  patterns::FC fc_pattern(pattern, name_scope);
43
  auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
Y
Yan Chunwei 已提交
44
  fc_out->AsIntermediate();  // fc_out is a tmp var, will be removed after fuse.
A
Adam 已提交
45 46

  patterns::GRU gru_pattern(pattern, name_scope);
Y
Yan Chunwei 已提交
47
  gru_pattern(fc_out);
T
tensor-tang 已提交
48 49

  // Create New OpDesc
50 51 52
  auto gru_creator = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
                         Node* bias, Node* hidden, Node* fc_bias,
                         const bool use_mkldnn) {
T
tensor-tang 已提交
53 54
    OpDesc op_desc;
    op_desc.SetType("fusion_gru");
T
tensor-tang 已提交
55 56

#define NEW_NAME(x) name_scope + "/at." #x ".new"
Y
Yan Chunwei 已提交
57
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
T
tensor-tang 已提交
58 59 60
    SET_IN(X, x);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
A
Adam 已提交
61
    SET_IN(Bias, bias);
T
tensor-tang 已提交
62
#undef SET_IN
A
Adam 已提交
63
    // TODO(grygielski): Add H0 to the pass
T
tensor-tang 已提交
64
    op_desc.SetInput("H0", {});
Y
Yan Chunwei 已提交
65 66
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
A
Adam 已提交
67 68
    op_desc.SetAttr("origin_mode",
                    gru->Op()->GetAttrIfExists<bool>("origin_mode"));
T
tensor-tang 已提交
69 70
    // TODO(TJ): This should be a option for infer
    op_desc.SetAttr("use_seq", true);
71
    op_desc.SetAttr("use_mkldnn", use_mkldnn);
A
Adam 已提交
72 73
    op_desc.SetAttr("activation", gru->Op()->GetAttr("activation"));
    op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation"));
T
tensor-tang 已提交
74 75 76 77 78 79 80 81 82

#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
    SET_IMTERMEDIATE_OUT(ReorderedH0);
    SET_IMTERMEDIATE_OUT(XX);
    SET_IMTERMEDIATE_OUT(BatchedInput);
    SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT

    auto* op = graph->CreateOpNode(&op_desc);
T
tensor-tang 已提交
83
    if (with_fc_bias) {
A
Adam 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
      auto* gru_bias_var = scope->FindVar(bias->Name());
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
      PADDLE_ENFORCE_NE(
          gru_bias_var, nullptr,
          platform::errors::NotFound("GRU bias var has not been found."));
      PADDLE_ENFORCE_NE(
          fc_bias_var, nullptr,
          platform::errors::NotFound("FC bias var has not been found."));

      auto* gru_bias_tensor = gru_bias_var->GetMutable<LoDTensor>();
      auto* fc_bias_tensor = fc_bias_var->GetMutable<LoDTensor>();
      PADDLE_ENFORCE_EQ(
          gru_bias_tensor->numel(), fc_bias_tensor->numel(),
          platform::errors::PreconditionNotMet(
              "GRU and FC biases have to have equal number of elements."));

      auto gru_bias_data =
          gru_bias_tensor->mutable_data<float>(platform::CPUPlace());
      auto* fc_bias_data = fc_bias_tensor->data<float>();

      // Recompute GRU bias
      for (int i = 0; i < gru_bias_tensor->numel(); ++i) {
        gru_bias_data[i] += fc_bias_data[i];
T
tensor-tang 已提交
107 108 109 110
      }
    }
#undef GET_NODE

111 112 113 114 115 116
#define NEW_IMTERMEDIATE_OUT(key)                \
  VarDesc key(NEW_NAME(key));                    \
  key.SetPersistable(false);                     \
  auto* key##_node = graph->CreateVarNode(&key); \
  IR_NODE_LINK_TO(op, key##_node);

T
tensor-tang 已提交
117 118 119 120 121 122
    NEW_IMTERMEDIATE_OUT(ReorderedH0);
    NEW_IMTERMEDIATE_OUT(XX);
    NEW_IMTERMEDIATE_OUT(BatchedInput);
    NEW_IMTERMEDIATE_OUT(BatchedOut);
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
T
tensor-tang 已提交
123

Y
Yan Chunwei 已提交
124 125 126
    IR_NODE_LINK_TO(x, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
A
Adam 已提交
127
    IR_NODE_LINK_TO(bias, op);
Y
Yan Chunwei 已提交
128
    IR_NODE_LINK_TO(op, hidden);
T
tensor-tang 已提交
129 130 131 132 133 134 135
    // h0?
    return op;
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Y
Yan Chunwei 已提交
136 137 138 139 140 141 142
    auto* x_n = subgraph.at(x);
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
T
tensor-tang 已提交
143
    // nodes need be removed
Y
Yan Chunwei 已提交
144
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
145 146 147
    GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev,
                              gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern);
T
tensor-tang 已提交
148

149 150 151 152 153
    // TODO(wilber): Support origin_mode=True.
    if (gru->Op()->GetAttrIfExists<bool>("origin_mode") == true) {
      LOG(INFO) << "fc_gru_fuse_pass not supported when origin_mode=True.";
      return;
    }
154 155 156 157 158
    const bool use_mkldnn =
        (mul->Op()->GetAttrIfExists<bool>("use_mkldnn") &&
         gru->Op()->GetAttrIfExists<std::string>("activation") == "tanh" &&
         gru->Op()->GetAttrIfExists<std::string>("gate_activation") ==
             "sigmoid");
159

T
tensor-tang 已提交
160
    if (with_fc_bias) {
Y
Yan Chunwei 已提交
161 162 163
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
164
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
165

166
      gru_creator(gru, x_n, w, Weight, Bias, Hidden, fc_bias, use_mkldnn);
T
tensor-tang 已提交
167 168
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
169
          {mul, gru, elementwise_add, fc_out, mul_out, BatchGate,
Y
Yan Chunwei 已提交
170
           BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
171 172
      GraphSafeRemoveNodes(graph, marked_nodes);
    } else {
173
      gru_creator(gru, x_n, w, Weight, Bias, Hidden, nullptr, use_mkldnn);
T
tensor-tang 已提交
174
      // Remove unneeded nodes.
T
tensor-tang 已提交
175
      std::unordered_set<const Node*> marked_nodes(
Y
Yan Chunwei 已提交
176
          {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
177 178 179 180 181 182 183 184 185 186 187 188
      GraphSafeRemoveNodes(graph, marked_nodes);
    }
#undef GET_NODE

    ++fusion_count;
  };

  gpd(graph, handler);

  return fusion_count;
}

189 190
void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
191

192 193
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
T
tensor-tang 已提交
194 195 196 197

  AddStatis(fusion_count);
}

198 199
void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
200

201 202
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
T
tensor-tang 已提交
203 204 205 206 207 208 209 210

  AddStatis(fusion_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
211 212
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);
213 214 215 216 217
REGISTER_PASS_CAPABILITY(mul_gru_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
            .EQ("gru", 0)
218
            .LE("fusion_gru", 1));
219 220 221 222
REGISTER_PASS_CAPABILITY(fc_gru_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
223
            .LE("elementwise_add", 1)
224
            .EQ("gru", 0)
225
            .LE("fusion_gru", 1));