fc_gru_fuse_pass.cc 7.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
16

T
tensor-tang 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/op_version_registry.h"
T
tensor-tang 已提交
20

21 22 23 24 25 26
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
27 28 29 30
namespace paddle {
namespace framework {
namespace ir {

W
wanghuancoder 已提交
31 32
class Node;

T
tensor-tang 已提交
33 34
static int BuildFusion(Graph* graph, const std::string& name_scope,
                       Scope* scope, bool with_fc_bias) {
T
tensor-tang 已提交
35 36 37
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

Y
Yan Chunwei 已提交
38 39 40
  PDNode* x =
      pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();

A
Adam 已提交
41 42
  // Create pattern.
  patterns::FC fc_pattern(pattern, name_scope);
43
  auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
Y
Yan Chunwei 已提交
44
  fc_out->AsIntermediate();  // fc_out is a tmp var, will be removed after fuse.
A
Adam 已提交
45 46

  patterns::GRU gru_pattern(pattern, name_scope);
Y
Yan Chunwei 已提交
47
  gru_pattern(fc_out);
T
tensor-tang 已提交
48 49

  // Create New OpDesc
Y
Yan Chunwei 已提交
50 51
  auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
                         Node* bias, Node* hidden, Node* fc_bias) {
T
tensor-tang 已提交
52 53
    OpDesc op_desc;
    op_desc.SetType("fusion_gru");
T
tensor-tang 已提交
54 55

#define NEW_NAME(x) name_scope + "/at." #x ".new"
Y
Yan Chunwei 已提交
56
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
T
tensor-tang 已提交
57 58 59
    SET_IN(X, x);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
A
Adam 已提交
60
    SET_IN(Bias, bias);
T
tensor-tang 已提交
61
#undef SET_IN
A
Adam 已提交
62
    // TODO(grygielski): Add H0 to the pass
T
tensor-tang 已提交
63
    op_desc.SetInput("H0", {});
Y
Yan Chunwei 已提交
64 65
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
A
Adam 已提交
66 67
    op_desc.SetAttr("origin_mode",
                    gru->Op()->GetAttrIfExists<bool>("origin_mode"));
T
tensor-tang 已提交
68 69
    // TODO(TJ): This should be a option for infer
    op_desc.SetAttr("use_seq", true);
A
Adam 已提交
70 71
    op_desc.SetAttr("activation", gru->Op()->GetAttr("activation"));
    op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation"));
T
tensor-tang 已提交
72 73 74 75 76 77 78 79 80

#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
    SET_IMTERMEDIATE_OUT(ReorderedH0);
    SET_IMTERMEDIATE_OUT(XX);
    SET_IMTERMEDIATE_OUT(BatchedInput);
    SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT

    auto* op = graph->CreateOpNode(&op_desc);
T
tensor-tang 已提交
81
    if (with_fc_bias) {
A
Adam 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      auto* gru_bias_var = scope->FindVar(bias->Name());
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
      PADDLE_ENFORCE_NE(
          gru_bias_var, nullptr,
          platform::errors::NotFound("GRU bias var has not been found."));
      PADDLE_ENFORCE_NE(
          fc_bias_var, nullptr,
          platform::errors::NotFound("FC bias var has not been found."));

      auto* gru_bias_tensor = gru_bias_var->GetMutable<LoDTensor>();
      auto* fc_bias_tensor = fc_bias_var->GetMutable<LoDTensor>();
      PADDLE_ENFORCE_EQ(
          gru_bias_tensor->numel(), fc_bias_tensor->numel(),
          platform::errors::PreconditionNotMet(
              "GRU and FC biases have to have equal number of elements."));

      auto gru_bias_data =
          gru_bias_tensor->mutable_data<float>(platform::CPUPlace());
      auto* fc_bias_data = fc_bias_tensor->data<float>();

      // Recompute GRU bias
      for (int i = 0; i < gru_bias_tensor->numel(); ++i) {
        gru_bias_data[i] += fc_bias_data[i];
T
tensor-tang 已提交
105 106 107 108
      }
    }
#undef GET_NODE

109 110 111 112 113 114
#define NEW_IMTERMEDIATE_OUT(key)                \
  VarDesc key(NEW_NAME(key));                    \
  key.SetPersistable(false);                     \
  auto* key##_node = graph->CreateVarNode(&key); \
  IR_NODE_LINK_TO(op, key##_node);

T
tensor-tang 已提交
115 116 117 118 119 120
    NEW_IMTERMEDIATE_OUT(ReorderedH0);
    NEW_IMTERMEDIATE_OUT(XX);
    NEW_IMTERMEDIATE_OUT(BatchedInput);
    NEW_IMTERMEDIATE_OUT(BatchedOut);
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
T
tensor-tang 已提交
121

Y
Yan Chunwei 已提交
122 123 124
    IR_NODE_LINK_TO(x, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
A
Adam 已提交
125
    IR_NODE_LINK_TO(bias, op);
Y
Yan Chunwei 已提交
126
    IR_NODE_LINK_TO(op, hidden);
T
tensor-tang 已提交
127 128 129 130 131 132 133
    // h0?
    return op;
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Y
Yan Chunwei 已提交
134 135 136 137 138 139 140
    auto* x_n = subgraph.at(x);
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
T
tensor-tang 已提交
141
    // nodes need be removed
Y
Yan Chunwei 已提交
142
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
143 144 145
    GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev,
                              gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern);
T
tensor-tang 已提交
146

147 148 149 150 151 152
    // TODO(wilber): Support origin_mode=True.
    if (gru->Op()->GetAttrIfExists<bool>("origin_mode") == true) {
      LOG(INFO) << "fc_gru_fuse_pass not supported when origin_mode=True.";
      return;
    }

T
tensor-tang 已提交
153
    if (with_fc_bias) {
Y
Yan Chunwei 已提交
154 155 156
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
157
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
158 159

      gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias);
T
tensor-tang 已提交
160 161
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
162
          {mul, gru, elementwise_add, fc_out, mul_out, BatchGate,
Y
Yan Chunwei 已提交
163
           BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
164 165
      GraphSafeRemoveNodes(graph, marked_nodes);
    } else {
Y
Yan Chunwei 已提交
166
      gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr);
T
tensor-tang 已提交
167
      // Remove unneeded nodes.
T
tensor-tang 已提交
168
      std::unordered_set<const Node*> marked_nodes(
Y
Yan Chunwei 已提交
169
          {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
170 171 172 173 174 175 176 177 178 179 180 181
      GraphSafeRemoveNodes(graph, marked_nodes);
    }
#undef GET_NODE

    ++fusion_count;
  };

  gpd(graph, handler);

  return fusion_count;
}

182 183
void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
184

185 186
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
T
tensor-tang 已提交
187 188 189 190

  AddStatis(fusion_count);
}

191 192
void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
T
tensor-tang 已提交
193

194 195
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
T
tensor-tang 已提交
196 197 198 199 200 201 202 203

  AddStatis(fusion_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
204 205
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);
206 207 208 209 210
REGISTER_PASS_CAPABILITY(mul_gru_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
            .EQ("gru", 0)
211
            .LE("fusion_gru", 1));
212 213 214 215
REGISTER_PASS_CAPABILITY(fc_gru_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
216
            .LE("elementwise_add", 1)
217
            .EQ("gru", 0)
218
            .LE("fusion_gru", 1));