conv_mkldnn_op.cc 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
30
using platform::to_void_cast;
31

A
Adam 已提交
32
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
33
                         const int groups) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
Y
Yihua Xu 已提交
41 42 43
  }
}

44 45 46
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
47
  if (is_conv3d) {
48
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
49
  } else {
50
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
51 52 53
  }
}

54 55
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
56
                                            std::string fuse_activation,
57 58 59
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
60 61 62 63 64 65 66
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
67 68
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
69
      if (dst_dt != residual_dt) dst_dt = residual_dt;
70 71 72 73 74
    }
  }
  return dst_dt;
}

75
template <typename T, typename K, typename T_out>
76 77
class ConvMKLDNNHandlerT
    : public platform::MKLDNNHandlerT<T, mkldnn::convolution_forward> {
78
 public:
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  ConvMKLDNNHandlerT(const paddle::framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     const mkldnn::engine mkldnn_engine,
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::convolution_forward>(
            dev_ctx, mkldnn_engine, cpu_place,
            platform::CreateKey(framework::vectorize(input->dims()),
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, input->layout()));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
98

99 100 101 102 103 104 105 106
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
120

121 122 123 124 125 126 127 128 129 130 131 132
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
133

134 135 136 137 138 139 140 141 142
      if (bias) {
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
143

144 145 146 147 148 149
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
150

151 152 153 154 155 156 157 158 159
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
160

161 162 163 164 165 166
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
167

168 169
      const auto ksize = framework::vectorize(filter_data_dims);
      const bool is_test = ctx.Attr<bool>("is_test");
170

171 172
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
173

174 175
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
176

177 178 179
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
180

181 182 183
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
      const bool is_conv3d = strides.size() == 3U;
A
Adam 已提交
184

185 186 187 188 189 190 191
      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, platform::errors::Unimplemented(
                    "Dilation in oneDNN convolution is not implemented yet"));
192

193
      const auto src_tz = paddle::framework::vectorize(input->dims());
194

195 196
      auto weights_tz = paddle::framework::vectorize(filter->dims());
      GetWeightsTz(weights_tz, groups);
197

198
      const auto dst_tz = paddle::framework::vectorize(output->dims());
199

200 201
      const mkldnn::memory::dims stride_dims = strides;
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
A
Adam 已提交
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
      // TODO(jczaja): This is workaround to make grad op UT's numerical
      // gradient computation proper as this op is called directly without
      // fetch op following it , so numercial grad is computed (in python)
      // using block formats which will give wrong results
      const std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          is_test ? MKLDNNMemoryFormat::any
                  : platform::data_format_to_memory_format(data_format);

      // Check the format for user's special output
      if (chosen_memory_format != MKLDNNMemoryFormat::any) {
        if (is_conv3d) {
          chosen_memory_format = platform::MKLDNNFormatForSize(
              src_tz.size(), chosen_memory_format);
        }
      }
223

224 225 226 227 228 229
      const auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto weights_md =
          platform::MKLDNNMemDesc(weights_tz, platform::MKLDNNGetDataType<T>(),
                                  MKLDNNMemoryFormat::any);
      const auto dst_md = platform::MKLDNNMemDesc(
230
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
231

232 233
      const auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                         : mkldnn::prop_kind::forward_training;
A
Adam 已提交
234

235 236
      const mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn);
A
Adam 已提交
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);

        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
            src_md, weights_md, bias_md, dst_md, stride_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
        this->AcquireForwardPrimitiveDescriptor(
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
            src_md, weights_md, dst_md, stride_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }
    }
  }
255

256 257 258 259 260 261 262 263 264 265
  mkldnn::primitive_attr CreatePostOps(
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
294

295 296 297
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryWithReorder(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
298
    auto user_src_md = platform::MKLDNNMemDesc(
299 300
        framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
        input->format());
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315
    return this->AcquireMemoryWithReorder(
        user_src_md, this->fwd_pd_->src_desc(), to_void_cast<T>(input_data),
        "@src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryWithReorder(
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
      const bool is_test) {
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
    if (is_test && weights_mem_p) {
      return weights_mem_p;
    } else {
316
      const K* filter_data = filter->data<K>();
317 318 319 320
      auto weights_tz = framework::vectorize(filter->dims());
      GetWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
321
          weights_tz, platform::MKLDNNGetDataType<K>(),
322 323 324 325
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
326
          to_void_cast<K>(filter_data), "@weights_mem_p", is_test);
327
    }
328
  }
329

330 331
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryWithReorder(
      const framework::Tensor* bias, const bool is_test) {
332
    const K* bias_data = bias->data<K>();
333
    auto user_bias_md = platform::MKLDNNMemDesc(
334
        framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
335
        MKLDNNMemoryFormat::x);
336

337
    return this->AcquireMemoryWithReorder(
338
        user_bias_md, this->fwd_pd_->bias_desc(), to_void_cast<K>(bias_data),
339 340
        "@bias_mem_p", is_test);
  }
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  std::shared_ptr<mkldnn::memory> AcquireResidualMemory(
      const framework::Tensor* residual_param) {
    const T* residual_data = residual_param->data<T>();
    auto user_residual_md = platform::MKLDNNMemDesc(
        framework::vectorize(residual_param->dims()),
        framework::ToMKLDNNDataType(residual_param->type()),
        residual_param->format());

    return this->AcquireMemoryFromPrimitive(user_residual_md,
                                            to_void_cast<T>(residual_data),
                                            "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryWithResidual(
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
361
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
362 363 364 365 366 367
      this->AcquireReorder(residual_memory_p, dst_memory_p, "@residual_dst");
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
368
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    }
    return dst_memory_p;
  }
};

template <typename T, typename K>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
384
      ComputeFP32<float>(ctx);
385
    } else {
386 387 388 389 390 391 392 393 394 395 396 397 398
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
399
    }
400
  }
401

402
  template <typename T_out>
403 404 405 406
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
407

408 409 410
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
411

412 413 414 415 416
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
417

418
    ConvMKLDNNHandlerT<T, K, T_out> handler(
419 420
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
421

422
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
423

424 425
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
426

427 428 429
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
430
      dst_memory_p =
431 432
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
433
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
434
    }
435

436
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
437

438 439 440 441
    std::unordered_map<int, dnnl::memory> args = {
        {MKLDNN_ARG_SRC, *src_memory_p},
        {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
        {MKLDNN_ARG_DST, *dst_memory_p}};
A
Adam 已提交
442

443 444 445
    if (bias) {
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
      args.insert({MKLDNN_ARG_BIAS, *bias_memory_p});
446
    }
447 448 449

    mkldnn::stream astream(mkldnn_engine);
    conv_p->execute(astream, args);
A
Adam 已提交
450
    astream.wait();
451

452 453
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
454
  }
455

456
  template <typename T_out>
457 458 459 460 461 462 463 464 465 466
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

467
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
468 469 470
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
471
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));

    PADDLE_ENFORCE_GE(input->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
    PADDLE_ENFORCE_LE(input->dims().size(), 5,
                      platform::errors::InvalidArgument(
                          "Input must be with 4 or 5 dimensions, i.e. NCHW or "
                          "NCDHW, but got dimension = %d .",
                          input->dims().size()));
485

486
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
487
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
488 489
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
490

491 492
    const T* input_data = input->data<T>();

A
Adam 已提交
493
    auto src_tz = paddle::framework::vectorize(input->dims());
494

X
xiaolil1 已提交
495 496
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
497

L
lidanqing 已提交
498
    std::string key = platform::CreateKey(
H
hong 已提交
499
        src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
500

501 502
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
503 504 505
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
506
    std::shared_ptr<mkldnn::memory> dst_memory_p;
507
    std::vector<primitive> pipeline;
508
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
509 510 511 512 513 514
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
515 516
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() ==
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
517
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
518
    }
519

520 521 522
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
A
Adam 已提交
523 524
    auto weights_key = key + key_tid + "@weights_mem_p";
    auto bias_key = key + key_tid + "@bias_mem_p";
525
    auto user_src_key = key + key_tid + "@user_src_mem_p";
A
Adam 已提交
526
    auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
527 528 529 530 531 532
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

A
Adam 已提交
533 534
    mkldnn::stream astream(mkldnn_engine);

535
    if (conv_p == nullptr || !is_test) {
536 537 538 539 540 541
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

F
FDInSky 已提交
542 543 544 545 546
      PADDLE_ENFORCE_EQ(
          filter->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
              DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
547
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_GE(filter->dims().size(), 4,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
      PADDLE_ENFORCE_LE(filter->dims().size(), 5,
                        platform::errors::InvalidArgument(
                            "Filter must be with 4 or 5 dimensions, i.e. OIHW "
                            "or OIDHW, but got dimensions = %d .",
                            filter->dims().size()));
561 562 563 564 565 566 567 568

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
          "residual fusion does not support force output with fp32");

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
F
FDInSky 已提交
569 570 571 572 573
        PADDLE_ENFORCE_EQ(
            bias->layout(), DataLayout::kMKLDNN,
            platform::errors::InvalidArgument(
                "The bias tensor's layout should be %d, but got %d.",
                DataLayout::kMKLDNN, bias->layout()));
A
Adam 已提交
574
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
575 576
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
577 578

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
F
FDInSky 已提交
579 580 581 582
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, i.e. X, but "
                              "got dimension = %d .",
                              bias->dims().size()));
583 584
      }

A
Adam 已提交
585 586 587 588 589 590 591 592 593 594
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

595 596
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
597 598 599 600

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
F
FDInSky 已提交
601 602 603
                        platform::errors::InvalidArgument(
                            "int8 does not support conv3d currently, should "
                            "set param is_conv3d as False"));
604

605 606 607 608 609 610
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
611
      auto ksize = framework::vectorize(filter_data_dims);
612 613 614 615

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

616
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
617
      auto weights_tz = paddle::framework::vectorize(filter->dims());
618 619
      int g = std::max(groups, 1);

620
      GetWeightsTz(weights_tz, g);
A
Adam 已提交
621
      auto dst_tz = paddle::framework::vectorize(output->dims());
622 623 624 625 626 627 628 629

      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, "dilation in convolution is not implemented yet");

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
658

659 660 661 662 663 664 665
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
666 667 668
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
669
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
670

A
Adam 已提交
671
      std::vector<int64_t> bias_tz;
672 673 674 675 676 677 678 679 680 681 682 683 684

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
685

686
      if (bias) {
A
Adam 已提交
687
        bias_tz = paddle::framework::vectorize(bias->dims());
688 689 690 691 692 693 694 695 696 697 698 699
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
F
FDInSky 已提交
720 721 722 723 724 725 726
        PADDLE_ENFORCE_EQ(
            output->dims(), residual_param->dims(),
            platform::errors::InvalidArgument(
                "Output and elementwise parameter need to have the "
                "same dimension sizes, but got output's dimension = %d"
                " and residual param's dimension =%d .",
                output->dims().size(), residual_param->dims().size()));
727 728 729 730
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
731
              paddle::framework::vectorize(residual_param->dims());
732 733 734 735 736 737
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
738
          output->ShareDataWith(*residual_param);
739 740 741 742 743 744 745 746
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
747

748 749
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
750
      conv_p = handler->AcquireConvolution();
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
771 772 773 774
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
775
      } else {
A
Adam 已提交
776 777 778
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
779 780
      }
    } else {
A
Adam 已提交
781
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
782 783 784 785 786 787 788
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
A
Adam 已提交
789 790 791
        src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                      *src_memory_p);
        astream.wait();
792 793 794
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
795 796
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
797 798 799 800 801 802 803 804 805
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
806

807 808
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
809
        output->ShareDataWith(*residual_param);
810 811 812
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
813
      }
814
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
815

A
Adam 已提交
816
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
817 818
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
        residual_reorder_p->execute(astream, *user_residual_data_p,
                                    *dst_memory_p);
        astream.wait();
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
838 839
      }
    }
A
Adam 已提交
840
    astream.wait();
841
    if (need_s8_to_u8) {
X
xiaolil1 已提交
842 843
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
844 845 846
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
847 848 849
};

template <typename T>
850
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
851 852
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
853 854 855
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvGrad must use CPUPlace"));
856 857
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
858 859 860 861 862 863 864 865 866
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

867
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
F
FDInSky 已提交
868 869 870
                      platform::errors::InvalidArgument(
                          "The input tensor's layout should be %d, but got %d.",
                          DataLayout::kMKLDNN, input->layout()));
A
Adam 已提交
871
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
872 873
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor."));
874

F
FDInSky 已提交
875 876 877 878 879
    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, filter->layout()));
A
Adam 已提交
880
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
F
FDInSky 已提交
881 882
                      platform::errors::InvalidArgument(
                          "Got wrong format for Filter tensor."));
883

F
FDInSky 已提交
884 885 886 887 888
    PADDLE_ENFORCE_EQ(
        output_grad->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "The output_grad tensor's layout should be %d, but got %d.",
            DataLayout::kMKLDNN, output_grad->layout()));
A
Adam 已提交
889
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
890 891 892 893
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
F
FDInSky 已提交
894 895
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));
896

897 898
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
899 900 901 902 903 904 905 906 907
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

908
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
909

910
    int groups = ctx.Attr<int>("groups");
911

912
    bool is_conv3d = strides.size() == 3U;
913 914 915 916 917 918
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

919 920 921 922 923 924
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
925
    auto ksize = framework::vectorize(filter_data_dims);
926 927 928 929

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
930 931 932
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

933
    int g = std::max(groups, 1);
934
    GetWeightsTz(weights_tz, g);
A
Adam 已提交
935 936
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

937
    auto src_format = input->format();
938
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
939
        GetWeightsFormat(filter->format(), g, is_conv3d);
940

941
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
942
    // as well as attributes of primitive to be created
943
    // This name will be used as key when saving info into device context
944
    const std::string key = platform::CreateKey(
H
hong 已提交
945
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
946

947
    const std::string key_conv_pd = key + "@fwd_pd";
948
    std::vector<primitive> pipeline;
949

950 951
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
952
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
953
    auto user_weights_md = platform::MKLDNNMemDesc(
954
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
955 956
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
957 958 959 960 961

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
962 963 964 965 966 967 968 969 970

    // TODO(jczaja): Once GRAD NHWC is working then format 'any'
    // should be used exclusively. But till forward pass enforce
    // NCHW for training we need to have NCHW here as well
    // to avoid performance degradation in relu_grad and pool2d_grad
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

971
    weights_format = MKLDNNMemoryFormat::any;
972 973 974 975 976 977 978
    // Check the format for user's special output
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
    }
979

980
    auto src_md = platform::MKLDNNMemDesc(
981
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
982
    auto diff_src_md = platform::MKLDNNMemDesc(
983
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
984
    auto weights_md = platform::MKLDNNMemDesc(
985
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
986
    auto diff_weights_md = platform::MKLDNNMemDesc(
987
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
988
    auto diff_dst_md = platform::MKLDNNMemDesc(
989
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
990
    // Retrieve conv_pd from device context
991 992 993
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
994
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
F
FDInSky 已提交
995 996
                      platform::errors::InvalidArgument(
                          "Fail to find conv_pd in device context"));
997

998 999
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

1000 1001
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
1002 1003 1004
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

1005 1006 1007 1008 1009 1010
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
1011 1012 1013
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

1014 1015 1016 1017
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
1018 1019 1020
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
1021 1022 1023 1024 1025 1026 1027 1028

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
A
Adam 已提交
1029
    mkldnn::stream astream(mkldnn_engine);
1030
    if (filter_grad) {
1031 1032
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1033

1034 1035 1036 1037
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1038
      const size_t size = handler.GetDiffWeightsMemorySize();
1039
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
1040

1041 1042 1043 1044
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

A
Adam 已提交
1045
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
1046

A
Adam 已提交
1047 1048 1049 1050 1051 1052
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
1053

1054
      filter_grad->set_layout(DataLayout::kMKLDNN);
1055 1056 1057 1058 1059
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
      auto filter_fmt = GetMKLDNNFormat(*diff_weights_memory_p);
      filter_grad->set_format(platform::MKLDNNFormatForSize(
          g > 1 ? weights_tz.size() - 1 : weights_tz.size(), filter_fmt));
1060 1061
    }
    if (input_grad) {
1062 1063 1064 1065 1066 1067 1068
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1069
      const size_t size = handler.GetDiffSourceMemorySize();
1070
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
1071

1072 1073 1074
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
1075
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
1076

A
Adam 已提交
1077 1078 1079 1080 1081
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
1082

1083 1084
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1085
    }
X
xiaolil1 已提交
1086
  }
1087
};
1088

1089 1090 1091 1092 1093
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1094 1095 1096
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1097
                                    ops::ConvMKLDNNOpKernel<float, float>);
1098 1099 1100

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1101
                                    ops::kConvMKLDNNINT8,
1102
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1103 1104 1105

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1106
                                    ops::kConvMKLDNNINT8,
1107
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1108 1109 1110 1111 1112

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1113 1114 1115 1116

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1117
                                    ops::ConvMKLDNNOpKernel<float, float>);
1118 1119 1120 1121 1122

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);