config_parser.py 162.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142

X
Xi Chen 已提交
143
    # directly iterate through locals().iteritems() will change
X
Xi Chen 已提交
144
    # the size of locals() due to introducing k, v into scope
X
Xi Chen 已提交
145 146 147 148 149
    # which will break the process in some env

    local_vars = copy.deepcopy(locals())
    for k, v in local_vars.iteritems():
        globals()[k] = v
Z
zhangjinchao01 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
163

Z
zhangjinchao01 已提交
164 165
g_config_funcs = {}

Q
qijun 已提交
166

Z
zhangjinchao01 已提交
167 168 169 170 171
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
172

Z
zhangjinchao01 已提交
173 174 175 176 177
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
178

Z
zhangjinchao01 已提交
179 180 181 182 183 184
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
185

Z
zhangjinchao01 已提交
186 187
    return wrap

Q
qijun 已提交
188

Z
zhangjinchao01 已提交
189 190 191
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
192

Z
zhangjinchao01 已提交
193 194 195
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
196

Z
zhangjinchao01 已提交
197 198 199
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
200

Z
zhangjinchao01 已提交
201 202 203 204 205 206
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
207

Z
zhangjinchao01 已提交
208 209
# functions available in config file

Q
qijun 已提交
210

Z
zhangjinchao01 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
229

230 231
@config_func
def HasInputsSet():
232
    return len(g_current_submodel.input_layer_names) != 0
233

Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
258
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
259 260 261 262 263 264 265 266 267

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
268

Z
zhangjinchao01 已提交
269
@config_func
Q
qijun 已提交
270
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
271
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
272 273
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
274
    if name is not None:
Q
qijun 已提交
275 276 277
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
278 279 280

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
281

Z
zhangjinchao01 已提交
282 283
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
284 285
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
286 287
    return name + suffix

Q
qijun 已提交
288

Z
zhangjinchao01 已提交
289 290 291
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
292 293

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
294 295
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
296 297
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
298 299 300 301 302
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
303

Z
zhangjinchao01 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
327 328
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
329 330 331 332 333 334 335 336
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
337
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
338 339 340 341
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
342

Z
zhangjinchao01 已提交
343 344 345
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
346 347
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
348

Z
zhangjinchao01 已提交
349 350 351 352
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
353

Z
zhangjinchao01 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
367
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
368 369 370 371 372 373 374 375
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
376
                             target_inlinkname="",
Z
zhangjinchao01 已提交
377
                             seq_reversed=False):
378
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
379 380 381 382 383
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
384 385 386 387 388
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
396
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
397
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
398 399
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
416

Z
zhangjinchao01 已提交
417 418 419 420 421 422
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
423

Z
zhangjinchao01 已提交
424 425
@config_class
class Bias(Cfg):
X
xuwei06 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
442 443
        self.add_keys(locals())

Q
qijun 已提交
444

Z
zhangjinchao01 已提交
445 446 447 448 449 450 451
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
452
            initializer=None,
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
466
            bilinear_interp=None,
Z
zhangjinchao01 已提交
467 468 469 470
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
471
            maxout=None,
Q
qijun 已提交
472
            spp=None,
D
dangqingqing 已提交
473
            pad=None,
X
xzl 已提交
474
            upsample=None,
Z
zhangjinchao01 已提交
475 476 477 478 479
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
480
            input_layer_argument=None,
D
dangqingqing 已提交
481 482 483 484 485
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
486
        self.add_keys(locals())
D
dangqingqing 已提交
487 488 489
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
490

Q
qijun 已提交
491

Z
zhangjinchao01 已提交
492 493 494
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
495 496
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
497 498 499
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
500
            size=0,  # projection output size
Z
zhangjinchao01 已提交
501 502 503 504 505 506 507 508 509
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
510
            initializer=None,
Z
zhangjinchao01 已提交
511 512 513 514 515 516 517 518 519 520
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
521
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
535

Z
zhangjinchao01 已提交
536 537
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
538

Z
zhangjinchao01 已提交
539 540 541 542 543 544 545 546 547 548
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
549

Z
zhangjinchao01 已提交
550 551
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
552

Z
zhangjinchao01 已提交
553 554 555
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
556

Z
zhangjinchao01 已提交
557 558 559 560 561 562
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
563 564 565
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
566 567
        self.proj_conf.offset = offset

568 569 570
    def calc_output_size(self, input_layer_config):
        return 0  # depends on the outside MixedLayer

Z
zhangjinchao01 已提交
571 572
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
573

Z
zhangjinchao01 已提交
574 575 576
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
607 608 609 610 611 612 613
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
614

Z
zhangjinchao01 已提交
615 616
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
617

Z
zhangjinchao01 已提交
618 619 620
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
621

X
xuwei06 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
636

Z
zhangjinchao01 已提交
637 638 639 640 641 642
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
643

Z
zhangjinchao01 已提交
644 645 646
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
647

Z
zhangjinchao01 已提交
648 649 650 651 652 653
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
654

Z
zhangjinchao01 已提交
655 656 657
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
658

Z
zhangjinchao01 已提交
659 660 661 662 663 664
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
665

Z
zhangjinchao01 已提交
666 667 668
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
669

Z
zhangjinchao01 已提交
670 671 672 673
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
674 675
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


699
@config_class
700
class ConvBaseProjection(Projection):
Q
qijun 已提交
701 702 703 704 705
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
706
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
707 708 709 710 711 712 713 714 715 716 717 718

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
719 720
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
721 722 723 724 725 726 727

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
728

729 730 731 732 733 734 735 736 737
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
738 739
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
740

741
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
757 758
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
759 760 761

        parse_conv(
            conv_conf,
762
            self.input_layer_name,
763 764 765 766 767 768 769 770
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
771 772 773
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
774 775
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
776 777
    def __init__(
            self,
Q
qijun 已提交
778
            input_layer_names, ):
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786 787 788
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
789

Z
zhangjinchao01 已提交
790 791 792
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
793 794 795

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
814 815 816 817 818 819 820

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
821 822 823
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

824 825
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
826
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
827 828 829
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
830 831 832

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

833 834
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
835 836


837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
867 868 869
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
870 871 872 873 874 875 876 877 878 879 880 881
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
W
wanghaoshuang 已提交
882 883 884
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
Z
zhangjinchao01 已提交
885 886
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
887
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
888
        if padding_y is None:
Q
qijun 已提交
889
            self.padding_y = padding
890 891
        if dilation_y is None:
            self.dilation_y = dilation
Z
zhangjinchao01 已提交
892
        if stride_y is None:
Q
qijun 已提交
893
            self.stride_y = stride
Z
zhangjinchao01 已提交
894
        if output_x is not None:
Q
qijun 已提交
895 896
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
C
chengduoZH 已提交
918 919 920 921 922 923
        self.filter_size_y = filter_size_y if filter_size_y else filter_size
        self.filter_size_z = filter_size_z if filter_size_z else filter_size
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride
924 925 926 927
        if output_x is not None:
            config_assert(output_x <= 0)


L
liaogang 已提交
928 929
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
930
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
931 932
        self.add_keys(locals())

Q
qijun 已提交
933

Z
zhangjinchao01 已提交
934 935
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
936 937 938 939 940 941 942 943 944 945 946
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
947
        self.add_keys(locals())
Q
qijun 已提交
948 949


C
chengduoZH 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
975
@config_class
Q
qijun 已提交
976
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
977
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
978
        self.add_keys(locals())
Z
zhangjinchao01 已提交
979

Q
qijun 已提交
980

D
dangqingqing 已提交
981 982 983 984 985
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())

X
xzl 已提交
986

X
xzl 已提交
987 988 989 990 991
@config_class
class Upsample(Cfg):
    def __init__(self, scale, scale_y, pad_out_x, pad_out_y, upsample_size,
                 upsample_size_y):
        self.add_keys(locals())
D
dangqingqing 已提交
992

X
xzl 已提交
993

Z
zhangjinchao01 已提交
994 995
@config_class
class Norm(Cfg):
Q
qijun 已提交
996 997 998 999 1000 1001 1002 1003 1004
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
1005 1006
        self.add_keys(locals())

Q
qijun 已提交
1007

Z
zhangjinchao01 已提交
1008 1009
@config_class
class Image(Cfg):
Q
qijun 已提交
1010
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
1011 1012
        self.add_keys(locals())

Q
qijun 已提交
1013

Z
zhangjinchao01 已提交
1014 1015
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
1028 1029
        self.add_keys(locals())

Q
qijun 已提交
1030

1031 1032
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
1033
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
1034 1035
        self.add_keys(locals())

Q
qijun 已提交
1036

1037
def create_data_config_proto(async_load_data=False,
1038
                             constant_slots=None,
王益 已提交
1039 1040 1041
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
1042 1043 1044 1045 1046 1047 1048 1049
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
1050 1051
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
1052

Q
qijun 已提交
1053
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
1054 1055 1056 1057 1058 1059
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
1060

Z
zhangjinchao01 已提交
1061
@config_func
Q
qijun 已提交
1062 1063 1064 1065 1066
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1067
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1077

Z
zhangjinchao01 已提交
1078
@config_func
Q
qijun 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1089
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1090 1091
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1092

Z
zhangjinchao01 已提交
1093 1094 1095
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1096

Z
zhangjinchao01 已提交
1097 1098 1099
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1100 1101
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1102
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1103 1104 1105 1106
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1131

Z
zhangjinchao01 已提交
1132 1133
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1134
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1135 1136 1137 1138 1139
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1140

Z
zhangjinchao01 已提交
1141
@config_func
Q
qijun 已提交
1142 1143 1144 1145 1146 1147 1148
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1149

1150
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1184

L
Luo Tao 已提交
1185 1186
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
X
xzl 已提交
1187 1188 1189 1190 1191 1192 1193 1194
def cnn_output_size(img_size,
                    filter_size,
                    padding,
                    stride,
                    caffe_mode,
                    dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    output = (2 * padding + img_size - filter_s) / float(stride)
1195 1196 1197 1198 1199
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1200

1201
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1202
#It is the reverse function of cnn_output_size
X
xzl 已提交
1203 1204 1205 1206 1207 1208 1209 1210
def cnn_image_size(output_size,
                   filter_size,
                   padding,
                   stride,
                   caffe_mode,
                   dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    img_size = (output_size - 1) * stride + filter_s - 2 * padding
L
Luo Tao 已提交
1211 1212
    if not caffe_mode:
        img_size = img_size + 1
1213 1214
    return img_size

Q
qijun 已提交
1215

L
Luo Tao 已提交
1216
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


C
chengduoZH 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


L
Luo Tao 已提交
1243 1244 1245 1246 1247 1248
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1249
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode, exclude_mode):
Z
zhangjinchao01 已提交
1250
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1251
    config_assert(pool.pool_type in [
X
xzl 已提交
1252 1253 1254
        'max-projection', 'avg-projection', 'max-pool-with-mask', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in " \
              "['max-projection', 'avg-projection', 'max-pool-with-mask'," \
Q
qijun 已提交
1255
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1256 1257 1258 1259 1260 1261

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1262
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1263

L
Luo Tao 已提交
1264
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1265
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1266

1267
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1268

1269
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1270
        pool_conf.padding = pool.padding
1271
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1272 1273
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1274
                                         not ceil_mode)
D
dangqingqing 已提交
1275 1276
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1277
                                         pool_conf.stride_y, not ceil_mode)
1278 1279
    if exclude_mode != None:
        pool_conf.exclude_mode = exclude_mode
Q
qijun 已提交
1280

Z
zhangjinchao01 已提交
1281

C
chengduoZH 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1321
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1322
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1323 1324
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1325 1326
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1327
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1328

Q
qijun 已提交
1329

Z
zhangjinchao01 已提交
1330 1331
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1332
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1333
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1334

Z
zhangjinchao01 已提交
1335

C
chengduoZH 已提交
1336 1337 1338 1339 1340 1341
def parse_image3d(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
        get_img3d_size(input_layer_name, image_conf.channels)


Z
zhangjinchao01 已提交
1342 1343
def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1344 1345 1346 1347 1348
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1349 1350 1351 1352 1353 1354
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1355
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1356
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1357
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1358
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1359 1360 1361
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1362 1363
        norm_conf.scale /= norm.size**2

1364

L
Luo Tao 已提交
1365 1366
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1367
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
X
xzl 已提交
1377 1378 1379 1380 1381 1382
    if not conv.dilation:
        conv.dilation = 1
        conv.dilation_y = 1
    else:
        conv_conf.dilation = conv.dilation
        conv_conf.dilation_y = conv.dilation_y
Q
qijun 已提交
1383

1384
    if not trans:
1385
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1386
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1387
            get_img_size(input_layer_name, conv.channels)
1388
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1389
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1390
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1391 1392
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1393
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
1394
    else:
1395
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1396
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1397
            get_img_size(input_layer_name, conv.channels)
1398
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1399
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1400
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1401
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1402
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1403
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
Q
qijun 已提交
1404

1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


Z
zhangjinchao01 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1463
        block_expand_conf.output_x = cnn_output_size(
1464
            block_expand.img_size_x, block_expand.block_x,
1465
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1466 1467

    if block_expand_conf.img_size_y == 0:
1468
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1469
    else:
1470
        block_expand_conf.output_y = cnn_output_size(
1471
            block_expand.img_size_y, block_expand.block_y,
1472
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474

1475
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1476
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1477
    maxout_conf.groups = maxout.groups
1478

Q
qijun 已提交
1479

Z
zhangjinchao01 已提交
1480 1481
# Define an evaluator
@config_func
Y
yangyaming 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1524 1525
    if top_k is not None:
        evaluator.top_k = top_k
1526 1527
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1528

1529 1530 1531
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1544

Z
zhangjinchao01 已提交
1545 1546 1547 1548 1549
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1550
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1551 1552 1553 1554
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1555 1556
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1557
        config_assert('@' not in name,
Q
qijun 已提交
1558
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1574
        assert isinstance(self.config, LayerConfig)
1575
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
T
tensor-tang 已提交
1576
        mkldnn_acts = ['relu', 'tanh', 'softmax']
1577 1578
        if use_mkldnn and active_type in mkldnn_acts:
            active_type = "mkldnn_" + active_type
Z
zhangjinchao01 已提交
1579 1580 1581
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1582 1583
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1584 1585 1586 1587 1588 1589 1590
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1591
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1592 1593
            self.config.device = g_default_device

C
caoying03 已提交
1594 1595 1596
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1597 1598 1599 1600 1601 1602 1603
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1604 1605
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1606 1607 1608 1609 1610 1611 1612 1613
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1614
                self.operators.append(input)
Z
zhangjinchao01 已提交
1615 1616 1617 1618
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1619
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1620
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1621 1622
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1640
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1641
            size,
Q
qijun 已提交
1642 1643 1644
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1645 1646 1647 1648 1649 1650

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1651 1652 1653
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1663 1664
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1665 1666 1667
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1668 1669
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1681 1682
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1683
                    is_static=bias.is_static,
X
xuwei06 已提交
1684 1685
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1686 1687 1688 1689 1690
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1691 1692 1693 1694 1695 1696
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1711 1712
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1713 1714
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1715 1716
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1717 1718 1719 1720 1721 1722
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1723
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1736 1737
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1738 1739 1740 1741
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1742 1743
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1753 1754 1755 1756
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

C
chengduoZH 已提交
1757 1758 1759
    def set_layer_depth(self, depth):
        self.config.depth = depth

L
Luo Tao 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1773

Z
zhangjinchao01 已提交
1774 1775
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1776 1777 1778
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1779 1780
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1781

C
caoying03 已提交
1782 1783 1784
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1785
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1786 1787 1788 1789
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1790 1791 1792 1793 1794
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1795 1796


Z
zhangjinchao01 已提交
1797 1798
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1799 1800
    layer_type = 'fc'

L
lianxiaochen 已提交
1801 1802 1803 1804 1805 1806 1807
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1808
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1809 1810
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1811 1812 1813 1814
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
T
tensor-tang 已提交
1815
                "MKLDNNFCLayer support one and only one input!")
T
tensor-tang 已提交
1816 1817
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1818 1819 1820 1821 1822 1823
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1824 1825
            if use_mkldnn:
                config_assert(not sparse,
T
tensor-tang 已提交
1826
                              "MKLDNNFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1827 1828
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1829 1830
            if sparse:
                psize = self.inputs[input_index].nnz
1831 1832
            else:
                sparse = None
Z
zhangjinchao01 已提交
1833

Q
qijun 已提交
1834 1835
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1836
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1837 1838
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1839

Q
qijun 已提交
1840

T
tensor-tang 已提交
1841
@config_layer('mkldnn_fc')
T
tensor-tang 已提交
1842
class MKLDNNFcLayer(FCLayer):
T
tensor-tang 已提交
1843 1844 1845
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1846 1847
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1878 1879
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1892 1893
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1894 1895
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1896

1897 1898
@config_layer('print')
class PrintLayer(LayerBase):
1899
    def __init__(self, name, inputs, format=None):
1900
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1901 1902 1903 1904 1905 1906
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1907

Q
qijun 已提交
1908

Y
yuan 已提交
1909 1910
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1911 1912
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1913
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1914
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1915 1916 1917 1918 1919 1920 1921
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1922
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1923 1924 1925 1926 1927 1928
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1929

1930 1931 1932
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1933
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1955
                 background_id, **xargs):
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


G
guosheng 已提交
1976 1977
@config_layer('roi_pool')
class ROIPoolLayer(LayerBase):
1978 1979
    def __init__(self, name, inputs, pooled_width, pooled_height, spatial_scale,
                 num_channels, **xargs):
G
guosheng 已提交
1980 1981 1982 1983 1984
        super(ROIPoolLayer, self).__init__(name, 'roi_pool', 0, inputs)
        config_assert(len(inputs) == 2, 'ROIPoolLayer must have 2 inputs')
        self.config.inputs[0].roi_pool_conf.pooled_width = pooled_width
        self.config.inputs[0].roi_pool_conf.pooled_height = pooled_height
        self.config.inputs[0].roi_pool_conf.spatial_scale = spatial_scale
1985
        self.set_cnn_layer(name, pooled_height, pooled_width, num_channels)
G
guosheng 已提交
1986 1987


Z
zhangjinchao01 已提交
1988 1989
@config_layer('data')
class DataLayer(LayerBase):
C
chengduoZH 已提交
1990 1991 1992 1993 1994 1995 1996
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
Q
qijun 已提交
1997 1998
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1999 2000
        if height and width:
            self.set_layer_height_width(height, width)
C
chengduoZH 已提交
2001 2002
        if depth:
            self.set_layer_depth(depth)
Q
qijun 已提交
2003

Z
zhangjinchao01 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
2031 2032


Z
zhangjinchao01 已提交
2033 2034
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
2035
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
2047

Z
zhangjinchao01 已提交
2048 2049 2050
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
2051 2052

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
2053 2054
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
X
xzl 已提交
2055

Z
zhangjinchao01 已提交
2056
        input_layer = self.get_input_layer(0)
2057 2058 2059
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
2060 2061

        dims = [1, input_layer.size / partial_sum]
Z
zhangjinchao01 已提交
2062
        self.set_layer_size(input_layer.size)
C
caoying03 已提交
2063
        self.config.partial_sum = partial_sum
2064 2065 2066 2067 2068
        self.create_input_parameter(0, input_layer.size / partial_sum, dims)

        self.set_layer_height_width(self.get_input_layer(0).height, \
                                        self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
2069

Q
qijun 已提交
2070

Z
zhangjinchao01 已提交
2071 2072 2073
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
2074 2075 2076 2077 2078 2079 2080 2081

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
2082 2083 2084 2085 2086 2087
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

2088
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
Z
zhangjinchao01 已提交
2089 2090 2091
        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2092 2093
        # Automatically select cudnn_type for GPU, exconv for CPU
        # and mkldnn_conv for MKLDNN
Z
zhangjinchao01 已提交
2094
        # if set type=conv, but still reserve the way user specify
2095
        # exconv, mkldnn_conv or cudnn_conv manually.
Z
zhangjinchao01 已提交
2096 2097 2098
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

2099 2100 2101
        if self.layer_type == "mkldnn_conv":
            config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")

Z
zhangjinchao01 已提交
2102
        if (use_gpu == 1 and self.layer_type != "exconv" and
2103
                self.layer_type != "mkldnn_conv" and
Q
qijun 已提交
2104
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
2105 2106
            self.layer_type = "cudnn_conv"
        else:
2107
            self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
Z
zhangjinchao01 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
2117 2118
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
2119 2120
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
2121 2122
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
2123 2124 2125 2126 2127 2128 2129 2130

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
2131
               * (conv_conf.filter_size * conv_conf.filter_size_y)
Z
zhangjinchao01 已提交
2132

Q
qijun 已提交
2133

Z
zhangjinchao01 已提交
2134 2135 2136 2137
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
2138

2139 2140 2141 2142 2143
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'mkldnn_conv'


Z
zhangjinchao01 已提交
2144 2145 2146 2147
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2148 2149 2150 2151

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
2152 2153 2154 2155 2156 2157 2158 2159

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2160
        super(ConvTransLayerBase, self).__init__(
2161 2162 2163 2164 2165 2166 2167 2168
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2180 2181 2182 2183 2184 2185 2186 2187
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2188
            parse_conv(
2189 2190
                self.inputs[input_index].conv,
                input_layer.name,
2191
                self.config.inputs[input_index].conv_conf,
2192
                num_filters,
2193
                trans=True)
2194 2195 2196
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2197 2198
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2199 2200 2201 2202 2203 2204 2205

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2206
        return conv_conf.channels * conv_conf.filter_channels \
2207 2208
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2209

2210 2211 2212 2213
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
2214

2215 2216 2217 2218 2219
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


C
chengduoZH 已提交
2220 2221
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
2222 2223 2224 2225 2226
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
C
chengduoZH 已提交
2227
                 shared_biases=True,
2228
                 **xargs):
C
chengduoZH 已提交
2229
        super(Conv3DLayerBase, self).__init__(
2230 2231 2232 2233 2234 2235 2236 2237
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        # need to specify layer in config
        self.config.type = self.layer_type

C
chengduoZH 已提交
2238 2239 2240 2241
        trans = False
        if self.config.type == "deconv3d":
            trans = True

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
C
chengduoZH 已提交
2253
                trans=trans
2254 2255 2256
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
C
chengduoZH 已提交
2257 2258 2259 2260 2261 2262 2263
            if trans:
                self.set_cnn_layer(name, conv_conf.img_size_z,
                                   conv_conf.img_size_y, conv_conf.img_size,
                                   self.config.num_filters)
            else:
                self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                                   conv_conf.output_x, self.config.num_filters)
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
C
chengduoZH 已提交
2284 2285
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
2286 2287 2288 2289 2290
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


C
chengduoZH 已提交
2291 2292 2293
@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'
2294

Q
qijun 已提交
2295

C
chengduoZH 已提交
2296 2297 2298
@config_layer('deconv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'deconv3d'
2299 2300


Z
zhangjinchao01 已提交
2301 2302
@config_layer('norm')
class NormLayer(LayerBase):
2303 2304
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
2305 2306 2307 2308
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        use_mkldnn = True if use_mkldnn and self.inputs[
            0].norm.norm_type == 'cmrnorm-projection' else False
        self.config.type = 'mkldnn_lrn' if use_mkldnn else self.config.type
Z
zhangjinchao01 已提交
2309 2310 2311
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2312 2313
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
2314 2315
            norm_conf.scale = self.inputs[
                input_index].norm.scale if use_mkldnn else norm_conf.scale
L
Luo Tao 已提交
2316 2317
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2318 2319 2320
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2321

Z
zhangjinchao01 已提交
2322 2323 2324

@config_layer('pool')
class PoolLayer(LayerBase):
2325 2326
    layer_type = 'pool'

2327
    def __init__(self, name, inputs, ceil_mode=True, exclude_mode=None,
2328
                 **xargs):
2329 2330 2331 2332 2333 2334
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
        if self.layer_type == "mkldnn_pool":
            config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN")
        self.layer_type = 'mkldnn_pool' if use_mkldnn else 'pool'
        super(PoolLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2335 2336 2337
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2338
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2339
                       pool_conf, ceil_mode, exclude_mode)
L
Luo Tao 已提交
2340 2341
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2342

Z
zhangjinchao01 已提交
2343

2344 2345 2346 2347 2348
@config_layer('mkldnn_pool')
class MKLDNNPoolLayer(PoolLayer):
    layer_type = 'mkldnn_pool'


C
chengduoZH 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2378 2379
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2380
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2381
        super(SpatialPyramidPoolLayer, self).__init__(
2382
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2383 2384 2385
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2386 2387 2388
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2389

X
xzl 已提交
2390

X
xzl 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
@config_layer('upsample')
class UpsampleLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(UpsampleLayer, self).__init__(
            name, 'upsample', 0, inputs=inputs, **xargs)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].upsample_conf.image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)

        upsample = self.inputs[0].upsample
X
xzl 已提交
2405
        output_x = 0
X
xzl 已提交
2406 2407
        output_y = 0
        output_size = 0
X
xzl 已提交
2408

X
xzl 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
        if upsample.scale:
            self.config.inputs[0].upsample_conf.scale = upsample.scale
            self.config.inputs[0].upsample_conf.scale_y = upsample.scale_y
            output_x = input_layer.width * upsample.scale
            output_y = input_layer.height * upsample.scale_y
        self.config.inputs[0].upsample_conf.pad_out_x = upsample.pad_out_x
        self.config.inputs[0].upsample_conf.pad_out_y = upsample.pad_out_y
        if upsample.upsample_size:
            self.config.inputs[
                0].upsample_conf.upsample_size = upsample.upsample_size
            self.config.inputs[
                0].upsample_conf.upsample_size_y = upsample.upsample_size_y
            output_x = upsample.upsample_size
            output_y = upsample.upsample_size_y

        output_size = image_conf.channels * output_x * output_y

        self.set_layer_height_width(output_y, output_x)
        self.set_layer_depth(input_layer.depth)
        self.set_layer_size(output_size)
Q
qijun 已提交
2429

X
xzl 已提交
2430

D
dangqingqing 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2450 2451
@config_layer('crop')
class CropLayer(LayerBase):
2452
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2453
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2454 2455 2456
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2457 2458 2459 2460 2461 2462 2463 2464

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)
W
wanghaoshuang 已提交
2465
        # only support for 4-dims inputs and NCHW order
2466 2467 2468 2469 2470 2471
        if (len(self.config.inputs) == 2):
            self.set_layer_height_width(
                self.get_input_layer(1).height, self.get_input_layer(1).width)
            self.set_layer_size(self.get_input_layer(1).size)
        else:
            self.set_layer_height_width(shape[-2], shape[-1])
W
wanghaoshuang 已提交
2472
            self.set_layer_size(reduce(lambda x, y: x * y, shape[1:]))
2473 2474


Z
zhangjinchao01 已提交
2475 2476 2477
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2478 2479 2480 2481 2482

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
C
chengduoZH 已提交
2483
                 img3D=False,
Q
qijun 已提交
2484
                 use_global_stats=True,
P
peterzhang2029 已提交
2485
                 epsilon=1e-5,
Q
qijun 已提交
2486 2487
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
C
chengduoZH 已提交
2488
                 mean_var_names=None,
Q
qijun 已提交
2489
                 **xargs):
Z
zhangjinchao01 已提交
2490 2491 2492 2493
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2494 2495
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2496 2497 2498 2499 2500 2501
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
2502
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
Z
zhangjinchao01 已提交
2503 2504
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2505 2506 2507 2508 2509 2510
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2511
                    is_shared=is_shared,
D
dangqingqing 已提交
2512
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2513 2514 2515

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
2516 2517 2518 2519
        # Automatically select cudnn_batch_norm for GPU, batch_norm for CPU
        # and mkldnn_batch_norm for MKLDNN. Also based on cudnn version.
        if batch_norm_type == "mkldnn_batch_norm":
            config_assert(use_mkldnn, "mkldnn_batch_norm only support MKLDNN")
Z
zhangjinchao01 已提交
2520
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2521
                not use_mkldnn and batch_norm_type != "mkldnn_batch_norm" and \
2522
                ((not parallel_nn) or self.config.device > -1)
2523 2524 2525 2526
        if use_cudnn:
            self.layer_type = "cudnn_batch_norm"
        else:
            self.layer_type = "mkldnn_batch_norm" if use_mkldnn else "batch_norm"
Q
qijun 已提交
2527
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2528
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2529 2530 2531 2532 2533

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction
P
peterzhang2029 已提交
2534 2535 2536
        if epsilon is not None:
            assert epsilon >= 1e-5, "epsilon must be no less than 1e-5."
            self.config.epsilon = epsilon
Z
zhangjinchao01 已提交
2537

Q
qijun 已提交
2538
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2539
        image_conf = self.config.inputs[0].image_conf
C
chengduoZH 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
        if img3D:
            parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    depth=image_conf.img_size_z,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
2554
        else:
C
chengduoZH 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
            parse_image(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2567 2568 2569

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
C
chengduoZH 已提交
2570 2571 2572 2573
        if mean_var_names is not None:
            assert len(mean_var_names) == 2
            self.inputs[1].parameter_name = mean_var_names[0]
            self.inputs[2].parameter_name = mean_var_names[1]
C
chengduoZH 已提交
2574

Z
zhangjinchao01 已提交
2575 2576 2577 2578 2579 2580
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

C
chengduoZH 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
    def set_cnn_layer(self,
                      input_layer_name,
                      depth=None,
                      height=None,
                      width=None,
                      channels=None,
                      is_print=True):
        depthIsNone = False
        if depth is None:
            depth = 1
            depthIsNone = True
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print and depthIsNone:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))
        elif is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))

Z
zhangjinchao01 已提交
2603 2604 2605
    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2606

Z
zhangjinchao01 已提交
2607 2608
@config_layer('trans')
class TransLayer(LayerBase):
2609
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2610
        super(TransLayer, self).__init__(
2611
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2612 2613 2614
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2615 2616
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2617

Z
zhangjinchao01 已提交
2618 2619
@config_layer('resize')
class ResizeLayer(LayerBase):
2620
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2621
        super(ResizeLayer, self).__init__(
2622
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2623 2624 2625 2626
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2627

2628 2629
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2630
    def __init__(self, name, inputs, height, width, device=None):
2631 2632 2633 2634 2635
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2636
        self.set_layer_height_width(height, width)
2637 2638 2639
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2640 2641
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2642
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2643
        super(BlockExpandLayer, self).__init__(
2644
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2645 2646
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2647 2648
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2649
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2650 2651 2652 2653 2654 2655
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2656

2657 2658
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2659 2660 2661
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2662 2663
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2664
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2665
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2666 2667
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2668

2669

D
dangqingqing 已提交
2670 2671 2672 2673
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2674
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2675 2676
        config_assert(
            len(self.inputs) == 1,
2677
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2687 2688
@config_layer('clip')
class ClipLayer(LayerBase):
2689 2690
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2691 2692
        config_assert(
            len(self.inputs) == 1,
2693 2694
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2695 2696
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2697 2698
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2699 2700


G
guosheng 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2715 2716 2717 2718
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2719

Z
zhangjinchao01 已提交
2720 2721 2722
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2723 2724
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2725

Q
qijun 已提交
2726
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2727 2728 2729
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2730

Z
zhangjinchao01 已提交
2731
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2732
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
Z
zhangjinchao01 已提交
2733 2734 2735 2736 2737 2738
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2739
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2740
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2741
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2742

Q
qijun 已提交
2743

Z
zhangjinchao01 已提交
2744 2745
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2746
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2747 2748
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2749 2750 2751
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2752 2753 2754 2755 2756 2757 2758 2759
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2760

Z
zhangjinchao01 已提交
2761 2762 2763 2764 2765 2766 2767 2768
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
L
Luo Tao 已提交
2769
          by PyDataProvider etc.. User should provide
Z
zhangjinchao01 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2785 2786


Z
zhangjinchao01 已提交
2787 2788
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2789
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2790 2791
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2792
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2793 2794
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2795 2796 2797
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2798 2799
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2800

L
Luo Tao 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


Z
zhangjinchao01 已提交
2812 2813
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2814 2815 2816 2817 2818 2819 2820 2821
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2822
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2823 2824
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2825 2826
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2827 2828 2829 2830
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2831
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2832 2833 2834
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2835 2836 2837 2838 2839

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2840
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2841 2842 2843 2844
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2845 2846
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
T
tensor-tang 已提交
2860 2861
    layer_type = 'addto'

Q
qijun 已提交
2862
    def __init__(self, name, inputs, bias=True, **xargs):
T
tensor-tang 已提交
2863 2864 2865 2866
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        if self.layer_type == "mkldnn_addto":
            config_assert(use_mkldnn, "mkldnn_addto only support MKLDNN")
        self.layer_type = 'mkldnn_addto' if use_mkldnn else 'addto'
Z
zhangjinchao01 已提交
2867
        super(AddToLayer, self).__init__(
T
tensor-tang 已提交
2868
            name, self.layer_type, 0, inputs=inputs, **xargs)
Q
qijun 已提交
2869
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2870

G
guosheng 已提交
2871 2872 2873 2874 2875 2876 2877 2878
        layer_size = self.get_input_layer(0).size
        # To reserve heght, width, depth.
        layer_with_hwc = self.get_input_layer(0)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            assert layer_size == input_layer.size
            if input_layer.height and input_layer.height and input_layer.height:
                layer_with_hwc = input_layer
2879

G
guosheng 已提交
2880 2881 2882
        self.set_layer_size(layer_with_hwc.size)
        self.set_layer_height_width(layer_with_hwc.height, layer_with_hwc.width)
        self.set_layer_depth(layer_with_hwc.depth)
Z
zhangjinchao01 已提交
2883 2884
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2885

T
tensor-tang 已提交
2886 2887 2888 2889 2890
@config_layer('mkldnn_addto')
class MKLDNNAddtoLayer(AddToLayer):
    layer_type = 'mkldnn_addto'


Z
zhangjinchao01 已提交
2891 2892
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2893 2894 2895 2896
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2897 2898 2899

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2900
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2901 2902 2903
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2904

Z
zhangjinchao01 已提交
2905 2906
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2907
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2908 2909
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2910 2911
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2912

Q
qijun 已提交
2913

Z
zhangjinchao01 已提交
2914 2915
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2916 2917 2918 2919 2920
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2921
        for i in range(1, len(inputs)):
Q
qijun 已提交
2922 2923 2924 2925 2926
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2927 2928

@config_func
2929 2930 2931 2932
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2933 2934 2935 2936
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2937

Z
zhangjinchao01 已提交
2938 2939
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2940 2941 2942 2943
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2967
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2968
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2969
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2970
    memory = g_current_submodel.memories.add()
2971 2972
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2973
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2974
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2975
                   boot_with_const_id is not None))
Q
qijun 已提交
2976 2977 2978 2979
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2980 2981 2982
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2983 2984
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2985 2986 2987
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2988
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2989 2990 2991 2992 2993
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
3017 3018 3019 3020
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
3030

Z
zhangjinchao01 已提交
3031 3032
@config_layer('expand')
class ExpandLayer(LayerBase):
3033
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
3034
        super(ExpandLayer, self).__init__(
3035
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3036 3037 3038 3039 3040 3041 3042 3043
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
3044 3045 3046

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
3047 3048 3049 3050 3051
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
3052 3053
                 bias=False,
                 **xargs):
Q
qijun 已提交
3054
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
3055
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3056 3057 3058
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
3059
            self.config.num_filters = num_filters
Q
qijun 已提交
3060
        else:
Z
zhangjinchao01 已提交
3061
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
3062 3063
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
3064
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
3065 3066 3067 3068


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
3069 3070 3071 3072 3073
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3074
                 output_max_index=None,
3075
                 stride=-1,
3076
                 **xargs):
3077
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3078
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
3079 3080
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3081
        self.config.trans_type = trans_type
3082
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3083 3084 3085 3086
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
3087 3088
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
3089 3090 3091 3092


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
3093
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
3111
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
3112 3113 3114
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
3115
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
3116 3117
        self.config.eos_id = eos_id

Q
qijun 已提交
3118

Z
zhangjinchao01 已提交
3119 3120
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
3121 3122 3123 3124
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
3125
                 bias=False,
3126
                 stride=-1,
3127
                 **xargs):
Q
qijun 已提交
3128
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
3129
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3130 3131
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
3132
        if trans_type == 'seq':
L
Luo Tao 已提交
3133
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3134
        self.config.trans_type = trans_type
3135 3136
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
3137 3138
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3139

Z
zhangjinchao01 已提交
3140 3141
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
3142 3143 3144 3145 3146
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3147
                 stride=-1,
3148
                 **xargs):
Q
qijun 已提交
3149
        super(SequenceFirstInstanceLayer, self).__init__(
3150 3151 3152 3153 3154 3155
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
3156 3157
        self.config.select_first = True

Q
qijun 已提交
3158

Z
zhangjinchao01 已提交
3159 3160
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
3161
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3162
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
3163
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3164 3165
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
3166 3167 3168 3169 3170
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3171

Z
zhangjinchao01 已提交
3172 3173
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
3174
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
3175
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
3176
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
3177 3178
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3179 3180 3181
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3182

Z
zhangjinchao01 已提交
3183 3184
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
3185
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3186
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
3187
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3188 3189 3190 3191 3192 3193
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3194

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
3235
            self.config.select_first = (starts is not None)
3236 3237


C
caoying03 已提交
3238 3239
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
3252
        super(SubNestedSequenceLayer, self).__init__(
3253 3254 3255 3256 3257
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
3258 3259 3260 3261 3262
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


R
ranqiu 已提交
3263 3264 3265 3266 3267
@config_layer('dot_prod')
class DotProdLayer(LayerBase):
    def __init__(self, name, inputs, device=None):
        super(DotProdLayer, self).__init__(
            name, 'dot_prod', 0, inputs, device=device)
R
ranqiu 已提交
3268 3269 3270 3271
        config_assert(len(inputs) == 2, 'DotProdLayer must have 2 inputs.')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            "Two inputs should have the same size.")
R
ranqiu 已提交
3272 3273 3274
        self.set_layer_size(1)


Z
zhangjinchao01 已提交
3275 3276
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
3277 3278 3279
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3280 3281 3282 3283 3284
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
3285

Z
zhangjinchao01 已提交
3286 3287
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
3288 3289 3290
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3291 3292 3293 3294
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3295 3296 3297
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
3298 3299 3300

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
3301 3302 3303
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3304 3305 3306 3307 3308 3309
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3310

Z
zhangjinchao01 已提交
3311 3312
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
3313 3314 3315
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3316 3317 3318 3319
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3320 3321 3322
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
3323 3324 3325

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
3326 3327 3328
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3329 3330 3331 3332
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3333

Z
zhangjinchao01 已提交
3334 3335
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
3336
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3337
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
3338 3339 3340
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3341 3342 3343
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
3344 3345
        self.set_layer_size(size)

Q
qijun 已提交
3346

Z
zhangjinchao01 已提交
3347 3348
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
3349
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3350 3351
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
3352 3353
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
3354 3355 3356 3357 3358 3359 3360 3361
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
3362

L
liaogang 已提交
3363 3364
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
3365
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
3366
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3367
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
3368
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
3369 3370 3371 3372
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
3373

L
liaogang 已提交
3374

Z
zhangjinchao01 已提交
3375 3376
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
3377
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3378
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
3379 3380 3381
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
3382 3383 3384
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3385

G
guosheng 已提交
3386 3387
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3388
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3389
        super(RowL2NormLayer, self).__init__(
3390
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3391
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3392 3393
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3394 3395


C
caoying03 已提交
3396 3397 3398 3399 3400
@config_layer('cos')
class CosSimLayer(LayerBase):
    def __init__(self, name, inputs, cos_scale=1, device=None):
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
3401 3402 3403
        config_assert(
            len(self.inputs) == 2,
            'The CosSimLayer expects two and only two inputs.')
C
caoying03 已提交
3404 3405
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
C
caoying03 已提交
3406
            'The two inputs of CosSimLayer must have the same dimensionality.')
C
caoying03 已提交
3407 3408 3409
        self.config.cos_scale = cos_scale


Z
zhangjinchao01 已提交
3410 3411
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
3412
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
3413
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
3414
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3415
        self.config.cos_scale = cos_scale
Q
qijun 已提交
3416
        config_assert(
3417
            len(self.inputs) == 2, 'The CosSimVecMatLayer must have 2 inputs.')
3418 3419
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
3420
            'Wrong input size for CosSimVecMatLayer.')
Z
zhangjinchao01 已提交
3421

Q
qijun 已提交
3422

C
caoying03 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
@config_layer('l2_distance')
class L2DistanceLayer(LayerBase):
    def __init__(self, name, inputs, device=None):
        super(L2DistanceLayer, self).__init__(
            name, 'l2_distance', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, ('The L2DistanceLayer must have '
                                    'and only have 2 inputs.'))
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            ('Two inputs of the L2DistanceLayer must have '
             'the same dimensionality.'))
Z
zhangjinchao01 已提交
3435

Q
qijun 已提交
3436

Z
zhangjinchao01 已提交
3437 3438
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
3439
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3440 3441
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
3442 3443
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
3456 3457 3458 3459 3460
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3461
                 bias=False,
3462
                 stride=-1,
3463
                 **xargs):
Q
qijun 已提交
3464
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
3465
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3466
        self.config.average_strategy = average_strategy
3467 3468
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3469
        self.config.trans_type = trans_type
3470
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3471 3472 3473 3474 3475 3476
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3477

Z
zhangjinchao01 已提交
3478 3479
@config_layer('tensor')
class TensorLayer(LayerBase):
3480
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
3481
        super(TensorLayer, self).__init__(
3482
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3483 3484
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
3485 3486
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3497
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3515
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3516 3517 3518
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3519
            else:
3520 3521
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3522 3523 3524 3525
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3526 3527 3528 3529
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3530 3531 3532
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3533
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3534 3535 3536
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3537
            elif isinstance(input, Projection):
Q
qijun 已提交
3538 3539 3540 3541 3542 3543
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3555 3556
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3568 3569 3570 3571 3572 3573
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3574

3575 3576 3577
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3578

Q
qijun 已提交
3579

Z
zhangjinchao01 已提交
3580 3581
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3582
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3583 3584
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3585

Z
zhangjinchao01 已提交
3586 3587
@config_layer('concat')
class ConcatenateLayer(LayerBase):
3588 3589
    layer_type = 'concat'

Q
qijun 已提交
3590
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3591
        config_assert(inputs, 'inputs cannot be empty')
3592
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
3593 3594 3595 3596
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        if self.layer_type == "mkldnn_concat":
            config_assert(use_mkldnn, "mkldnn_concat only support MKLDNN")
        self.layer_type = 'mkldnn_concat' if use_mkldnn else 'concat'
Z
zhangjinchao01 已提交
3597
        super(ConcatenateLayer, self).__init__(
3598
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3599 3600
        size = 0
        for input_index in xrange(len(self.inputs)):
3601 3602 3603 3604 3605 3606
            assert self.get_input_layer(0).height == self.get_input_layer(
                input_index).height
            assert self.get_input_layer(0).width == self.get_input_layer(
                input_index).width
            assert self.get_input_layer(0).depth == self.get_input_layer(
                input_index).depth
Z
zhangjinchao01 已提交
3607 3608
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3609
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3610 3611
                size += input_layer.size

3612 3613 3614
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                    self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
3615 3616
        self.set_layer_size(size)

Q
qijun 已提交
3617

3618 3619 3620 3621 3622
@config_layer('mkldnn_concat')
class MKLDNNConcatLayer(ConcatenateLayer):
    layer_type = 'mkldnn_concat'


Z
zhangjinchao01 已提交
3623 3624 3625
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3626
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3627 3628 3629
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3630 3631

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3632 3633 3634 3635 3636 3637
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3638

Z
zhangjinchao01 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3659
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3660
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3661
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3662 3663
            self.create_input_parameter(input_index, psize, dims)

3664 3665 3666 3667 3668 3669 3670
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3671 3672 3673
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3674

Q
qijun 已提交
3675

Z
zhangjinchao01 已提交
3676 3677
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
3678 3679
    layer_type = 'recurrent'

Q
qijun 已提交
3680
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
3681 3682 3683 3684
        use_mkl_packed = bool(
            int(g_command_config_args.get("use_mkl_packed", 0)))
        self.layer_type = 'mkl_packed_recurrent' if use_mkl_packed else 'recurrent'
        super(RecurrentLayer, self).__init__(name, self.layer_type, 0, inputs,
Y
Yu Yang 已提交
3685
                                             **xargs)
Z
zhangjinchao01 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3695

Z
zhangjinchao01 已提交
3696 3697
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3698 3699 3700 3701 3702 3703 3704 3705
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3706 3707 3708 3709 3710 3711 3712 3713
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3714
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3715 3716 3717 3718 3719
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3720

Z
zhangjinchao01 已提交
3721 3722
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3733 3734 3735
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3736 3737 3738 3739 3740
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3741 3742 3743
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3744

Z
zhangjinchao01 已提交
3745 3746 3747
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3748 3749 3750 3751
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3752 3753 3754 3755
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3756

Z
zhangjinchao01 已提交
3757 3758
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3759 3760 3761 3762 3763 3764 3765 3766
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3767 3768
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3769 3770 3771 3772
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3773 3774
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3775
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3776
        self.set_layer_size(size)
Q
qijun 已提交
3777
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3778 3779 3780
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3781 3782
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3783
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3784 3785
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3786 3787 3788

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3800 3801 3802 3803 3804 3805
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3806
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3807 3808 3809
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3810

Z
zhangjinchao01 已提交
3811 3812
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3813 3814 3815 3816 3817 3818 3819
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3820 3821
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3822 3823 3824
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3825 3826 3827 3828 3829
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3830
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3831 3832
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3833

Z
zhangjinchao01 已提交
3834 3835 3836 3837 3838 3839 3840
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3841 3842


Z
zhangjinchao01 已提交
3843 3844
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3845
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3846
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3847 3848
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3849
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3850 3851
        self.config.coeff = coeff

Q
qijun 已提交
3852

Z
zhangjinchao01 已提交
3853 3854 3855 3856 3857 3858 3859 3860
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3861 3862


Z
zhangjinchao01 已提交
3863 3864
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3865
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3866 3867 3868 3869 3870
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3871
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3872

Q
qijun 已提交
3873

Z
zhangjinchao01 已提交
3874 3875
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3876
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3877 3878 3879 3880
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3881

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3913 3914
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3915
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3916 3917 3918 3919
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


3920 3921 3922 3923 3924
@config_layer('switch_order')
class SwitchOrderLayer(LayerBase):
    def __init__(self, name, inputs, reshape, **xargs):
        super(SwitchOrderLayer, self).__init__(
            name, 'switch_order', 0, inputs=inputs, **xargs)
W
wanghaoshuang 已提交
3925 3926
        self.config.reshape_conf.height_axis.extend(reshape['height'])
        self.config.reshape_conf.width_axis.extend(reshape['width'])
3927 3928 3929 3930
        input_layer = self.get_input_layer(0)
        if reshape is None:
            self.set_layer_size(input_layer.size)
        else:
W
wanghaoshuang 已提交
3931 3932
            in_h = input_layer.height
            in_w = input_layer.width
W
wanghaoshuang 已提交
3933
            out_dims = None
W
wanghaoshuang 已提交
3934
            if input_layer.has_depth():
W
wanghaoshuang 已提交
3935 3936
                in_d = input_layer.depth
                in_c = input_layer.size / in_h / in_w / in_d
W
wanghaoshuang 已提交
3937
                # batch_size, depth, height, width, channel
W
wanghaoshuang 已提交
3938
                out_dims = [0, in_d, in_h, in_w, in_c]
W
wanghaoshuang 已提交
3939
            else:
W
wanghaoshuang 已提交
3940
                in_c = input_layer.size / in_h / in_w
W
wanghaoshuang 已提交
3941
                # batch_size, height, width, channel
W
wanghaoshuang 已提交
3942
                out_dims = [0, in_h, in_w, in_c]
W
wanghaoshuang 已提交
3943 3944 3945
            # Because (reshape['width'][0] > 0) always be true.
            # So out_dims[0] won't be used.
            size = reduce(lambda x, y: x * y, out_dims[reshape['width'][0]:])
3946
            self.set_layer_size(size)
3947 3948


Y
yangyaming 已提交
3949 3950
@config_layer('scale_sub_region')
class ScaleSubRegionLayer(LayerBase):
Y
yangyaming 已提交
3951
    def __init__(self, name, inputs, value, **xargs):
Y
yangyaming 已提交
3952 3953 3954 3955
        super(ScaleSubRegionLayer, self).__init__(
            name, 'scale_sub_region', 0, inputs=inputs, **xargs)
        scale_sub_region_conf = self.config.inputs[0].scale_sub_region_conf
        scale_sub_region_conf.value = value
Y
yangyaming 已提交
3956 3957 3958

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
Y
yangyaming 已提交
3959
        image_conf = scale_sub_region_conf.image_conf
Y
yangyaming 已提交
3960 3961 3962 3963
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)
Y
yangyaming 已提交
3964 3965
        self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
                           image_conf.channels)
Y
yangyaming 已提交
3966 3967


3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
@config_layer('factorization_machine')
class FactorizationMachineLayer(LayerBase):
    def __init__(self, name, inputs, factor_size, **xargs):
        super(FactorizationMachineLayer, self).__init__(
            name, 'factorization_machine', size=1, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'factorization machine layer must have one and only one input.')
        self.config.factor_size = factor_size
        input_layer = self.get_input_layer(0)
        psize = input_layer.size * factor_size
3979
        dims = [input_layer.size, factor_size]
3980 3981 3982
        self.create_input_parameter(0, psize, dims)


Z
zhangjinchao01 已提交
3983 3984
# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3985
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3986 3987 3988 3989
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3990
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3991
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3992

Q
qijun 已提交
3993

Z
zhangjinchao01 已提交
3994
@config_func
Q
qijun 已提交
3995
def ParameterHook(type, **kwargs):
3996
    if type == 'pruning':
Z
zhangjinchao01 已提交
3997 3998
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3999
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
4000 4001
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
4002
        return hook
4003 4004 4005 4006
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
4007 4008 4009 4010 4011
    else:
        return None


@config_func
Q
qijun 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
4033 4034
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
4035 4036 4037 4038 4039 4040 4041

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
4053 4054
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
4055 4056 4057 4058 4059

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
4060 4061 4062 4063
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
4064

Q
qijun 已提交
4065 4066
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
4067 4068 4069
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
4070 4071 4072 4073 4074 4075
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
4076 4077
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
4078 4079
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
4080 4081
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
4082 4083 4084 4085 4086 4087
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
4088 4089 4090
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
4091 4092 4093 4094
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
4095 4096 4097 4098 4099 4100 4101

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
4102 4103 4104 4105
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
4106 4107
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
4108 4109 4110 4111 4112

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
4113
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
4114 4115 4116 4117 4118

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
4119
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
4120 4121

    g_parameter_map[name] = para
X
xuwei06 已提交
4122 4123 4124 4125 4126
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
4127 4128 4129 4130 4131 4132 4133


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
4134

Z
zhangjinchao01 已提交
4135 4136 4137 4138 4139
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
4140

Z
zhangjinchao01 已提交
4141 4142 4143 4144 4145
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
4146

Z
zhangjinchao01 已提交
4147 4148 4149 4150 4151
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
4152

Z
zhangjinchao01 已提交
4153 4154 4155 4156 4157
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
4158

Z
zhangjinchao01 已提交
4159 4160 4161 4162 4163
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
4164

Z
zhangjinchao01 已提交
4165 4166 4167 4168 4169
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
4170

Z
zhangjinchao01 已提交
4171 4172 4173 4174 4175
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
4176

Z
zhangjinchao01 已提交
4177 4178 4179 4180 4181
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
4182

Z
zhangjinchao01 已提交
4183 4184 4185 4186 4187
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
4188

Z
zhangjinchao01 已提交
4189 4190 4191 4192 4193
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
4194

Z
zhangjinchao01 已提交
4195 4196 4197 4198 4199
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
4200 4201 4202
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
4203 4204
    return Import

Q
qijun 已提交
4205

X
xuwei06 已提交
4206
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
4207 4208 4209 4210 4211
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
4212
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
4235 4236 4237
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
4238

X
xuwei06 已提交
4239
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
4240

Q
qijun 已提交
4241
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
4242 4243 4244 4245

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
4246 4247
    start_pass=0, )

Z
zhangjinchao01 已提交
4248 4249 4250 4251 4252

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
4253 4254
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
4266

Z
zhangjinchao01 已提交
4267 4268 4269 4270
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
4271

Z
zhangjinchao01 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
4281

Z
zhangjinchao01 已提交
4282 4283 4284 4285
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
4286

Z
zhangjinchao01 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
4302
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
4303 4304 4305 4306 4307

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
4308

Z
zhangjinchao01 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
4325

Z
zhangjinchao01 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
4338

Z
zhangjinchao01 已提交
4339 4340 4341 4342
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
4343

4344
_parse_config_hooks = set()
Y
Yu Yang 已提交
4345 4346


4347 4348 4349 4350 4351 4352 4353
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
4354

Y
Yu Yang 已提交
4355

4356
def update_g_config():
Z
zhangjinchao01 已提交
4357
    '''
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


4381
def begin_parse():
Z
zhangjinchao01 已提交
4382
    init_config_environment()
4383 4384
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
4385 4386 4387 4388 4389

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
4399 4400 4401 4402
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
4403

4404
    begin_parse()
X
xuwei06 已提交
4405 4406
    config_args = {}

Z
zhangjinchao01 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

4419 4420
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
4421
            make_config_environment("", config_args))
4422
        trainer_config()
H
hanchao 已提交
4423
    else:
4424 4425
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
4426

4427
    return update_g_config()
Z
zhangjinchao01 已提交
4428 4429


4430
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
4431
    try:
4432
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
4433 4434 4435 4436 4437 4438
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
4439

Z
zhangjinchao01 已提交
4440 4441 4442 4443 4444 4445 4446 4447
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise