config_parser.py 128.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
130 131

        # store command args of paddle_trainer
Q
qijun 已提交
132
        g_command_config_args={},
Z
zhangjinchao01 已提交
133 134

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
135 136 137 138 139
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
140
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
157

Z
zhangjinchao01 已提交
158 159
g_config_funcs = {}

Q
qijun 已提交
160

Z
zhangjinchao01 已提交
161 162 163 164 165
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
166

Z
zhangjinchao01 已提交
167 168 169 170 171
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
172

Z
zhangjinchao01 已提交
173 174 175 176 177 178
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
179

Z
zhangjinchao01 已提交
180 181
    return wrap

Q
qijun 已提交
182

Z
zhangjinchao01 已提交
183 184 185
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
186

Z
zhangjinchao01 已提交
187 188 189
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
190

Z
zhangjinchao01 已提交
191 192 193
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
194

Z
zhangjinchao01 已提交
195 196 197 198 199 200
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
201

Z
zhangjinchao01 已提交
202 203
# functions available in config file

Q
qijun 已提交
204

Z
zhangjinchao01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
223

224 225
@config_func
def HasInputsSet():
226
    return len(g_current_submodel.input_layer_names) != 0
227

Z
zhangjinchao01 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
252
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
253 254 255 256 257 258 259 260 261

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
262

Z
zhangjinchao01 已提交
263
@config_func
Q
qijun 已提交
264
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
265
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
266 267
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
268
    if name is not None:
Q
qijun 已提交
269 270 271
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
272 273 274

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
275

Z
zhangjinchao01 已提交
276 277
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
278 279
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
280 281
    return name + suffix

Q
qijun 已提交
282

Z
zhangjinchao01 已提交
283 284 285
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
286 287

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
288 289
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
290 291
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
292 293 294 295 296
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
297

Z
zhangjinchao01 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
321 322
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
323 324 325 326 327 328 329
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
330
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
331
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336 337 338
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
339 340 341 342
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
343 344 345
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
Q
qijun 已提交
346 347 348 349
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
Z
zhangjinchao01 已提交
350 351 352 353 354 355 356
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
357

Z
zhangjinchao01 已提交
358 359 360 361 362
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

Q
qijun 已提交
363

Z
zhangjinchao01 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
380
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
381 382 383 384 385 386 387 388
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
389
                             target_inlinkname="",
Z
zhangjinchao01 已提交
390
                             seq_reversed=False):
Q
qijun 已提交
391
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
392
                                            target_inlinkname)
Z
zhangjinchao01 已提交
393 394 395 396 397
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
398 399 400 401 402
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
403 404 405 406 407 408 409


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
410
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
411
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
412 413
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
432

Z
zhangjinchao01 已提交
433 434 435 436 437 438
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
Q
qijun 已提交
457
            is_shared=None, ):
Z
zhangjinchao01 已提交
458 459
        self.add_keys(locals())

Q
qijun 已提交
460

Z
zhangjinchao01 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
481
            bilinear_interp=None,
Z
zhangjinchao01 已提交
482 483 484 485
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
486
            maxout=None,
Q
qijun 已提交
487
            spp=None,
D
dangqingqing 已提交
488
            pad=None,
Z
zhangjinchao01 已提交
489 490 491 492 493
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
494
            input_layer_argument=None,
D
dangqingqing 已提交
495 496 497 498 499
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
500
        self.add_keys(locals())
D
dangqingqing 已提交
501 502 503
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
504

Q
qijun 已提交
505

Z
zhangjinchao01 已提交
506 507 508
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
509 510
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
511 512 513
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
514
            size=0,  # projection output size
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
534
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
548

Z
zhangjinchao01 已提交
549 550
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
551

Z
zhangjinchao01 已提交
552 553 554 555 556 557 558 559 560 561
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
562

Z
zhangjinchao01 已提交
563 564
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
565

Z
zhangjinchao01 已提交
566 567 568
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
569

Z
zhangjinchao01 已提交
570 571 572 573 574 575
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
576 577 578
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
579 580 581 582
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
583

Z
zhangjinchao01 已提交
584 585 586
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
587

Z
zhangjinchao01 已提交
588 589 590 591 592 593 594
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
595

Z
zhangjinchao01 已提交
596 597
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
598

Z
zhangjinchao01 已提交
599 600 601
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
602

X
xuwei06 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
617

Z
zhangjinchao01 已提交
618 619 620 621 622 623
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
624

Z
zhangjinchao01 已提交
625 626 627
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
628

Z
zhangjinchao01 已提交
629 630 631 632 633 634
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
635

Z
zhangjinchao01 已提交
636 637 638
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
639

Z
zhangjinchao01 已提交
640 641 642 643 644 645
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
646

Z
zhangjinchao01 已提交
647 648 649
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
650

Z
zhangjinchao01 已提交
651 652 653 654
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
655 656
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


680
@config_class
681
class ConvBaseProjection(Projection):
Q
qijun 已提交
682 683 684 685 686
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
687
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
688 689 690 691 692 693 694 695 696 697 698 699

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
700 701
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
702 703 704 705 706 707 708

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
709

710 711 712 713 714 715 716 717 718
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
719 720
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
721

722
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
738 739
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
740 741 742

        parse_conv(
            conv_conf,
743
            self.input_layer_name,
744 745 746 747 748 749 750 751
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
752 753 754
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
755 756
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
757 758
    def __init__(
            self,
Q
qijun 已提交
759
            input_layer_names, ):
Z
zhangjinchao01 已提交
760 761 762 763 764 765 766 767 768 769
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
770

Z
zhangjinchao01 已提交
771 772 773
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
774 775 776

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
795 796 797 798 799 800 801

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
802 803 804
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

805 806
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
807
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
808 809 810
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
811 812 813

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

814 815
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
816 817


818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
848 849 850
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
864 865
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
866
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
867
        if padding_y is None:
Q
qijun 已提交
868
            self.padding_y = padding
Z
zhangjinchao01 已提交
869
        if stride_y is None:
Q
qijun 已提交
870
            self.stride_y = stride
Z
zhangjinchao01 已提交
871
        if output_x is not None:
Q
qijun 已提交
872 873
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
874

L
liaogang 已提交
875 876
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
877
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
878 879
        self.add_keys(locals())

Q
qijun 已提交
880

Z
zhangjinchao01 已提交
881 882
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
883 884 885 886 887 888 889 890 891 892 893
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
894
        self.add_keys(locals())
Q
qijun 已提交
895 896


Q
qijun 已提交
897
@config_class
Q
qijun 已提交
898
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
899
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
900
        self.add_keys(locals())
Z
zhangjinchao01 已提交
901

Q
qijun 已提交
902

D
dangqingqing 已提交
903 904 905 906 907 908
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
909 910
@config_class
class Norm(Cfg):
Q
qijun 已提交
911 912 913 914 915 916 917 918 919
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
920 921
        self.add_keys(locals())

Q
qijun 已提交
922

Z
zhangjinchao01 已提交
923 924
@config_class
class Image(Cfg):
Q
qijun 已提交
925
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
926 927
        self.add_keys(locals())

Q
qijun 已提交
928

Z
zhangjinchao01 已提交
929 930
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
931 932 933 934 935 936 937 938 939 940 941 942
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
943 944
        self.add_keys(locals())

Q
qijun 已提交
945

946 947
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
948
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
949 950
        self.add_keys(locals())

Q
qijun 已提交
951

952
def create_data_config_proto(async_load_data=False,
953
                             constant_slots=None,
王益 已提交
954 955 956
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
957 958 959 960 961 962 963 964
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
965 966
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
967

Q
qijun 已提交
968
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
969 970 971 972 973 974
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
975

Z
zhangjinchao01 已提交
976
@config_func
Q
qijun 已提交
977 978 979 980 981
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
982
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
983 984 985 986 987 988 989 990 991
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
992

Z
zhangjinchao01 已提交
993
@config_func
Q
qijun 已提交
994 995 996 997 998 999 1000 1001 1002 1003
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1004
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1005 1006
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1007

Z
zhangjinchao01 已提交
1008 1009 1010
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1011

Z
zhangjinchao01 已提交
1012 1013 1014
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1015 1016
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1017
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1018 1019 1020 1021
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1046

Z
zhangjinchao01 已提交
1047
@config_func
Q
qijun 已提交
1048 1049 1050 1051 1052 1053 1054
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1055
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1075

Z
zhangjinchao01 已提交
1076 1077
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1078
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1079 1080 1081 1082 1083
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1084

Z
zhangjinchao01 已提交
1085
@config_func
Q
qijun 已提交
1086 1087 1088 1089 1090 1091 1092
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1093

1094
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1128

L
Luo Tao 已提交
1129 1130
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1131 1132 1133 1134 1135 1136 1137
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1138

1139
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1140
#It is the reverse function of cnn_output_size
1141
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1142 1143 1144
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1145 1146
    return img_size

Q
qijun 已提交
1147

L
Luo Tao 已提交
1148
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1167
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1168
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1169 1170 1171
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1172
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1173
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1174 1175 1176 1177 1178 1179

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1180
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1181

L
Luo Tao 已提交
1182
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1183
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1184

1185
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1186

1187
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1188
        pool_conf.padding = pool.padding
1189
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1190 1191
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1192
                                         not ceil_mode)
D
dangqingqing 已提交
1193 1194
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1195
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1196

Z
zhangjinchao01 已提交
1197

Q
qijun 已提交
1198
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1199
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1200 1201
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1202 1203
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1204
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1205

Q
qijun 已提交
1206

Z
zhangjinchao01 已提交
1207 1208
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1209
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1210
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1211

Z
zhangjinchao01 已提交
1212 1213 1214

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1215 1216 1217 1218 1219
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1220 1221 1222 1223 1224 1225
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1226
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1227
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1228
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1229
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1230 1231 1232
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1233 1234
        norm_conf.scale /= norm.size**2

1235

L
Luo Tao 已提交
1236 1237
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1238
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1248

1249
    if not trans:
1250
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1251
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1252
            get_img_size(input_layer_name, conv.channels)
1253
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1254 1255
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1256 1257 1258
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1259
    else:
1260
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1261
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1262
            get_img_size(input_layer_name, conv.channels)
1263
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1264 1265
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1266
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1267 1268
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1269

1270

Z
zhangjinchao01 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1284
        block_expand_conf.output_x = cnn_output_size(
1285
            block_expand.img_size_x, block_expand.block_x,
1286
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1287 1288

    if block_expand_conf.img_size_y == 0:
1289
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1290
    else:
1291
        block_expand_conf.output_y = cnn_output_size(
1292
            block_expand.img_size_y, block_expand.block_y,
1293
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1294

Q
qijun 已提交
1295

1296
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1297
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1298
    maxout_conf.groups = maxout.groups
1299

Q
qijun 已提交
1300

Z
zhangjinchao01 已提交
1301 1302 1303 1304 1305 1306
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
Q
qijun 已提交
1307 1308 1309 1310 1311 1312 1313
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
L
Liang Zhao 已提交
1314
        top_k=None,
1315 1316
        delimited=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1342 1343
    if top_k is not None:
        evaluator.top_k = top_k
1344 1345
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1346

1347 1348 1349
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Q
qijun 已提交
1350

Z
zhangjinchao01 已提交
1351 1352 1353 1354 1355
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1356
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1357 1358 1359 1360
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1361
            coeff=None):
Z
zhangjinchao01 已提交
1362
        config_assert('@' not in name,
Q
qijun 已提交
1363
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1379
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1380 1381 1382
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1383 1384
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1385 1386 1387 1388 1389 1390 1391
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1392
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1402 1403
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1404 1405 1406 1407 1408 1409 1410 1411
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1412
                self.operators.append(input)
Z
zhangjinchao01 已提交
1413 1414 1415 1416
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1417
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1418
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1419 1420
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1438
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1439
            size,
Q
qijun 已提交
1440 1441 1442
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1443 1444 1445 1446 1447 1448

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1449 1450 1451
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1461 1462
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1463 1464 1465
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1466 1467
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1479 1480
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1481
                    is_static=bias.is_static,
Q
qijun 已提交
1482
                    is_shared=bias.is_shared, )
Z
zhangjinchao01 已提交
1483 1484 1485 1486 1487
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1488 1489 1490 1491 1492 1493
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1508 1509
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1510 1511
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1512 1513
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1514 1515 1516 1517 1518 1519
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1520
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1533 1534
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1535 1536 1537 1538
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
Q
qijun 已提交
1539
            update_hooks=input_config.update_hooks)
Z
zhangjinchao01 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1566

Z
zhangjinchao01 已提交
1567 1568
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1569 1570 1571
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1572 1573
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1574

Z
zhangjinchao01 已提交
1575 1576
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1577
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1588 1589
            else:
                sparse = None
Z
zhangjinchao01 已提交
1590

Q
qijun 已提交
1591 1592
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1593 1594
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1595

Z
zhangjinchao01 已提交
1596 1597
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1628 1629
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1642 1643
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1644 1645
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1646

1647 1648
@config_layer('print')
class PrintLayer(LayerBase):
Q
qijun 已提交
1649
    def __init__(self, name, inputs):
1650 1651
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Q
qijun 已提交
1652

Y
yuan 已提交
1653 1654
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1655 1656
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1657
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1658
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1659 1660 1661 1662 1663 1664 1665
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1666
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1667 1668 1669 1670 1671 1672
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1673

Z
zhangjinchao01 已提交
1674 1675
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1676
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1677 1678
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1679 1680
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1681

Z
zhangjinchao01 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1709 1710


Z
zhangjinchao01 已提交
1711 1712
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1713
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1725

Z
zhangjinchao01 已提交
1726 1727 1728
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1729 1730

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1731 1732 1733
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1734 1735 1736
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1737 1738 1739
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1740

Z
zhangjinchao01 已提交
1741 1742 1743
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1744 1745 1746 1747 1748 1749 1750 1751

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1768
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1781 1782
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1783 1784
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1785 1786
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1797

Z
zhangjinchao01 已提交
1798 1799 1800 1801
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1802

Z
zhangjinchao01 已提交
1803 1804 1805 1806
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1807 1808 1809 1810

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1811 1812 1813 1814 1815 1816 1817 1818

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1819
        super(ConvTransLayerBase, self).__init__(
1820 1821 1822 1823 1824 1825 1826 1827
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1839 1840 1841 1842 1843 1844 1845 1846
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1847
            parse_conv(
1848 1849
                self.inputs[input_index].conv,
                input_layer.name,
1850
                self.config.inputs[input_index].conv_conf,
1851
                num_filters,
1852
                trans=True)
1853 1854 1855
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1856 1857
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1858 1859 1860 1861 1862 1863 1864

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1865
        return conv_conf.channels * conv_conf.filter_channels \
1866 1867
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1868

1869 1870 1871 1872
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1873

1874 1875 1876 1877 1878
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
1879 1880
@config_layer('norm')
class NormLayer(LayerBase):
1881 1882
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1883 1884 1885
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
1886 1887 1888 1889
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
1890 1891 1892
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
1893

Z
zhangjinchao01 已提交
1894 1895 1896

@config_layer('pool')
class PoolLayer(LayerBase):
1897 1898
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1899 1900 1901
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
1902
            parse_pool(self.inputs[input_index].pool, input_layer.name,
1903
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
1904 1905
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
1906

Z
zhangjinchao01 已提交
1907

Q
qijun 已提交
1908 1909
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
1910
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
1911
        super(SpatialPyramidPoolLayer, self).__init__(
1912
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
1913 1914 1915
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
1916 1917 1918
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
1919

Q
qijun 已提交
1920

D
dangqingqing 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


Z
zhangjinchao01 已提交
1940 1941 1942
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
1953 1954 1955 1956
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
1957 1958
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
1959 1960 1961 1962 1963 1964 1965 1966
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
1967 1968 1969 1970 1971 1972
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
1973
                    is_shared=is_shared,
D
dangqingqing 已提交
1974
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
1975 1976 1977 1978 1979 1980 1981

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1982
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
1983
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
1984 1985 1986 1987 1988 1989 1990
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            **xargs)
Z
zhangjinchao01 已提交
1991 1992 1993 1994 1995 1996

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
1997
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
1998
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
1999
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2000

2001 2002
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2003 2004
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2005
                               image_conf.channels, False)
2006 2007
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2020

Z
zhangjinchao01 已提交
2021 2022
@config_layer('trans')
class TransLayer(LayerBase):
2023
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2024
        super(TransLayer, self).__init__(
2025
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2026 2027 2028
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2029 2030
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2031

Z
zhangjinchao01 已提交
2032 2033
@config_layer('resize')
class ResizeLayer(LayerBase):
2034
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2035
        super(ResizeLayer, self).__init__(
2036
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2037 2038 2039 2040
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2041

2042 2043
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2044
    def __init__(self, name, inputs, height, width, device=None):
2045 2046 2047 2048 2049
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2050
        self.set_layer_height_width(height, width)
2051 2052 2053
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2054 2055
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2056
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2057
        super(BlockExpandLayer, self).__init__(
2058
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2059 2060
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2061 2062
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2063
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2064 2065 2066 2067 2068 2069
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2070

2071 2072
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2073 2074 2075
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2076 2077
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2078
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2079 2080 2081
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
Q
qijun 已提交
2082

2083

D
dangqingqing 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


Z
zhangjinchao01 已提交
2101 2102 2103 2104
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2105

Z
zhangjinchao01 已提交
2106 2107 2108
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2109 2110
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2111

Q
qijun 已提交
2112
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2113 2114 2115
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2116

Z
zhangjinchao01 已提交
2117 2118 2119 2120 2121 2122 2123 2124
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2125
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2126
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2127

Q
qijun 已提交
2128

Z
zhangjinchao01 已提交
2129 2130
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2131
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2132 2133
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2134 2135 2136
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2137 2138 2139 2140 2141 2142 2143 2144
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2145

Z
zhangjinchao01 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2170 2171


Z
zhangjinchao01 已提交
2172 2173
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2174
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2175 2176
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2177
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2178 2179
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2180 2181 2182
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2183 2184
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2185

Z
zhangjinchao01 已提交
2186 2187
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2188 2189 2190 2191 2192 2193 2194 2195
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2196
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2197 2198
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2199 2200
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2201 2202 2203 2204
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2205
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2206 2207 2208
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2209 2210 2211 2212 2213

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2214
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2215 2216 2217 2218
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2219 2220
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2234
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2235 2236
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2237
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2238 2239 2240 2241 2242
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2243

Z
zhangjinchao01 已提交
2244 2245
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2246 2247 2248 2249
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2250 2251 2252

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
Q
qijun 已提交
2253
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2254 2255 2256
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

Q
qijun 已提交
2257

Z
zhangjinchao01 已提交
2258 2259
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2260
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2261 2262 2263
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2264

Z
zhangjinchao01 已提交
2265 2266
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2267
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2268 2269 2270
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2271

Z
zhangjinchao01 已提交
2272 2273
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
Q
qijun 已提交
2274
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2275
        super(SequenceGatherAgentLayer, self).__init__(
Q
qijun 已提交
2276 2277
            name, 'sequence_gather_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2278 2279 2280

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
Q
qijun 已提交
2281
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2282
        super(SequenceScatterAgentLayer, self).__init__(
Q
qijun 已提交
2283 2284
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2285 2286 2287

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2288 2289 2290 2291 2292
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2293
        for i in range(1, len(inputs)):
Q
qijun 已提交
2294 2295 2296 2297 2298
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2299 2300

@config_func
Q
qijun 已提交
2301 2302 2303
def Link(
        name,
        has_subseq=False, ):
Z
zhangjinchao01 已提交
2304 2305 2306 2307 2308
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

Q
qijun 已提交
2309

Z
zhangjinchao01 已提交
2310 2311
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2312 2313 2314 2315
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
Z
zhangjinchao01 已提交
2339
    if is_sequence:
L
Luo Tao 已提交
2340 2341 2342
        config_assert(
            boot_layer is not None,
            "there must be boot_layer in network when is_sequence = True")
Z
zhangjinchao01 已提交
2343 2344 2345 2346
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2347
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2348
    memory = g_current_submodel.memories.add()
2349 2350
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2351 2352
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
Q
qijun 已提交
2353
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2354
                   boot_with_const_id is not None))
Q
qijun 已提交
2355 2356 2357 2358
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2359 2360 2361
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2362 2363
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2364 2365 2366
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2367
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2368 2369 2370 2371 2372
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2396 2397 2398 2399
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2409

Z
zhangjinchao01 已提交
2410 2411
@config_layer('expand')
class ExpandLayer(LayerBase):
2412
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2413
        super(ExpandLayer, self).__init__(
2414
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2415 2416 2417 2418 2419 2420 2421 2422
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2423 2424 2425

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
Q
qijun 已提交
2426 2427 2428 2429 2430 2431
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2432
            self.config.num_filters = num_filters
Q
qijun 已提交
2433
        else:
Z
zhangjinchao01 已提交
2434
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
Q
qijun 已提交
2435
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2436 2437 2438 2439


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2440 2441 2442 2443 2444 2445
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 bias=False,
2446 2447
                 output_max_index=None,
                 **xargs):
2448
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2449
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2450 2451
        self.config.trans_type = trans_type
        self.config.active_type = active_type
Z
zhangjinchao01 已提交
2452 2453 2454 2455
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2456 2457
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2458 2459 2460 2461


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2462
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2480
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2481 2482 2483
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2484
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2485 2486
        self.config.eos_id = eos_id

Q
qijun 已提交
2487

Z
zhangjinchao01 已提交
2488 2489
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2490 2491 2492 2493 2494
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
2495
                 bias=False,
2496
                 stride=-1,
2497
                 **xargs):
Q
qijun 已提交
2498 2499 2500 2501 2502
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
2503 2504
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2505 2506
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2507
        if trans_type == 'seq':
L
Luo Tao 已提交
2508
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2509
        self.config.trans_type = trans_type
2510 2511
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2512 2513
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2514

Z
zhangjinchao01 已提交
2515 2516
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2517 2518 2519 2520 2521 2522
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 bias=False,
2523
                 stride=-1,
2524
                 **xargs):
Q
qijun 已提交
2525
        super(SequenceFirstInstanceLayer, self).__init__(
2526 2527 2528 2529 2530 2531 2532
            name,
            inputs=inputs,
            active_type=active_type,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2533 2534
        self.config.select_first = True

Q
qijun 已提交
2535

Z
zhangjinchao01 已提交
2536 2537
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
2538
    def __init__(self, name, inputs, active_type='linear', bias=False, **xargs):
Q
qijun 已提交
2539 2540 2541 2542 2543
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
2544 2545
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2546 2547
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2548 2549 2550 2551 2552
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2553

Z
zhangjinchao01 已提交
2554 2555
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
Q
qijun 已提交
2556 2557 2558 2559 2560
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
2561 2562
                 bias=False,
                 **xargs):
Q
qijun 已提交
2563 2564 2565
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
Z
zhangjinchao01 已提交
2566
            size,
Q
qijun 已提交
2567
            inputs=inputs,
2568 2569
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2570 2571
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2572 2573 2574
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2575

Z
zhangjinchao01 已提交
2576 2577
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
2578
    def __init__(self, name, inputs, active_type='linear', bias=False, **xargs):
Q
qijun 已提交
2579
        super(SubSequenceLayer, self).__init__(
2580
            name, 'subseq', 0, inputs=inputs, active_type=active_type, **xargs)
Z
zhangjinchao01 已提交
2581 2582 2583 2584 2585 2586
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2587

Z
zhangjinchao01 已提交
2588 2589
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2590 2591 2592
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2593 2594 2595 2596 2597
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2598

Z
zhangjinchao01 已提交
2599 2600
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2601 2602 2603
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2604 2605 2606 2607
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2608 2609 2610
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2611 2612 2613

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2614 2615 2616
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2617 2618 2619 2620 2621 2622
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2623

Z
zhangjinchao01 已提交
2624 2625
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2626 2627 2628
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2629 2630 2631 2632
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2633 2634 2635
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2636 2637 2638

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2639 2640 2641
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2642 2643 2644 2645
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2646

Z
zhangjinchao01 已提交
2647 2648
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2649
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2650
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2651 2652 2653
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2654 2655 2656
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2657 2658
        self.set_layer_size(size)

Q
qijun 已提交
2659

Z
zhangjinchao01 已提交
2660 2661
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2662
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2663 2664
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2665 2666
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2667 2668 2669 2670 2671 2672 2673 2674
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2675

L
liaogang 已提交
2676 2677
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2678
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2679
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2680
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2681
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2682 2683 2684 2685
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2686

L
liaogang 已提交
2687

Z
zhangjinchao01 已提交
2688 2689
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2690
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2691
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2692 2693 2694
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2695 2696 2697
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2698

Z
zhangjinchao01 已提交
2699 2700
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2701
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2702
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2703
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2704
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2705 2706
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2707 2708 2709
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2710

Q
qijun 已提交
2711

Z
zhangjinchao01 已提交
2712 2713
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2714
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2715 2716
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2717 2718
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2731 2732 2733 2734 2735 2736
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
2737 2738
                 bias=False,
                 **xargs):
Q
qijun 已提交
2739
        super(AverageLayer, self).__init__(
2740
            name, 'average', 0, inputs=inputs, active_type=active_type, **xargs)
Z
zhangjinchao01 已提交
2741
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2742
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2743 2744 2745 2746 2747 2748
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2749

Z
zhangjinchao01 已提交
2750 2751
@config_layer('cos')
class CosSimLayer(LayerBase):
2752
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
2753 2754 2755 2756 2757 2758
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2759
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2760 2761 2762 2763


@config_layer('tensor')
class TensorLayer(LayerBase):
2764
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
2765
        super(TensorLayer, self).__init__(
2766
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2767 2768
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2769 2770
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2781 2782 2783 2784 2785 2786 2787
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2805
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2806 2807 2808
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2809
            else:
2810 2811
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2812 2813 2814 2815
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2816 2817 2818 2819
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2820 2821 2822
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2823
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2824 2825 2826
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2827
            elif isinstance(input, Projection):
Q
qijun 已提交
2828 2829 2830 2831 2832 2833
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2845 2846
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2858 2859 2860 2861 2862 2863
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2864

2865 2866 2867
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2868

2869 2870
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2871

Q
qijun 已提交
2872

Z
zhangjinchao01 已提交
2873 2874
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2875
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2876 2877
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2878

Z
zhangjinchao01 已提交
2879 2880
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2881
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2882
        config_assert(inputs, 'inputs cannot be empty')
2883
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2884 2885 2886 2887 2888 2889
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2890
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2891 2892 2893 2894
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2895

Z
zhangjinchao01 已提交
2896 2897 2898
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2899
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2900 2901 2902
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2903 2904

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2905 2906 2907 2908 2909 2910
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2911

Z
zhangjinchao01 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2932
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2933
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2934
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2935 2936
            self.create_input_parameter(input_index, psize, dims)

2937 2938 2939 2940 2941 2942 2943
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2944 2945 2946
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2947

Q
qijun 已提交
2948

Z
zhangjinchao01 已提交
2949 2950
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
2951
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2952 2953
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2963

Z
zhangjinchao01 已提交
2964 2965
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
2966 2967 2968 2969 2970 2971 2972 2973
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2974 2975 2976 2977 2978 2979 2980 2981
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2982
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2983 2984 2985 2986 2987
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
2988

Z
zhangjinchao01 已提交
2989 2990
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3001 3002 3003
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3004 3005 3006 3007 3008
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3009 3010 3011
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3012

Z
zhangjinchao01 已提交
3013 3014 3015
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3016 3017 3018 3019
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3020 3021 3022 3023
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3024

Z
zhangjinchao01 已提交
3025 3026
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3027 3028 3029 3030 3031 3032 3033 3034
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3035 3036
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3037 3038 3039 3040
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3041 3042
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3043
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3044
        self.set_layer_size(size)
Q
qijun 已提交
3045
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3046 3047 3048
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3049 3050
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3051
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3052 3053
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3054 3055 3056

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3068 3069 3070 3071 3072 3073
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3074
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3075 3076 3077
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3078

Z
zhangjinchao01 已提交
3079 3080
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3081 3082 3083 3084 3085 3086 3087
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3088 3089
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3090 3091 3092
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3093 3094 3095 3096 3097
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3098
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3099 3100
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3101

Z
zhangjinchao01 已提交
3102 3103 3104 3105 3106 3107 3108
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3109 3110


Z
zhangjinchao01 已提交
3111 3112
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3113
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3114
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3115 3116
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3117
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3118 3119
        self.config.coeff = coeff

Q
qijun 已提交
3120

Z
zhangjinchao01 已提交
3121 3122 3123 3124 3125 3126 3127 3128
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3129 3130


Z
zhangjinchao01 已提交
3131 3132
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3133
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3134 3135 3136 3137 3138
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3139
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3140

Q
qijun 已提交
3141

Z
zhangjinchao01 已提交
3142 3143
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3144
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3145 3146 3147 3148
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3171 3172
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3173
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3174 3175 3176 3177 3178 3179
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3180
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3181 3182 3183 3184
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3185
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3186
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3187

Q
qijun 已提交
3188

Z
zhangjinchao01 已提交
3189
@config_func
Q
qijun 已提交
3190
def ParameterHook(type, **kwargs):
Z
zhangjinchao01 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
              update_hooks=None):
Z
zhangjinchao01 已提交
3225 3226 3227 3228 3229 3230 3231

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3243 3244
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3245 3246 3247 3248 3249

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3250 3251 3252 3253
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3254

Q
qijun 已提交
3255 3256
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3257 3258 3259
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3260 3261 3262 3263 3264 3265
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3266 3267
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3268 3269
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3270 3271
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3272 3273 3274 3275 3276 3277
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3278 3279 3280
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3281 3282 3283 3284
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3285 3286 3287 3288 3289 3290 3291

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3292 3293 3294 3295
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3296 3297
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3319

Z
zhangjinchao01 已提交
3320 3321 3322 3323 3324
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3325

Z
zhangjinchao01 已提交
3326 3327 3328 3329 3330
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3331

Z
zhangjinchao01 已提交
3332 3333 3334 3335 3336
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3337

Z
zhangjinchao01 已提交
3338 3339 3340 3341 3342
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3343

Z
zhangjinchao01 已提交
3344 3345 3346 3347 3348
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3349

Z
zhangjinchao01 已提交
3350 3351 3352 3353 3354
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3355

Z
zhangjinchao01 已提交
3356 3357 3358 3359 3360
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3361

Z
zhangjinchao01 已提交
3362 3363 3364 3365 3366
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3367

Z
zhangjinchao01 已提交
3368 3369 3370 3371 3372
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3373

Z
zhangjinchao01 已提交
3374 3375 3376 3377 3378
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3379

Z
zhangjinchao01 已提交
3380 3381 3382 3383 3384
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3385 3386 3387
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3388 3389
    return Import

Q
qijun 已提交
3390

X
xuwei06 已提交
3391
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3392 3393 3394 3395 3396
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3397
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3420 3421 3422
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3423

X
xuwei06 已提交
3424
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3425

Q
qijun 已提交
3426
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3427 3428 3429 3430

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3431 3432
    start_pass=0, )

Z
zhangjinchao01 已提交
3433 3434 3435 3436 3437

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3438 3439
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3451

Z
zhangjinchao01 已提交
3452 3453 3454 3455
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3456

Z
zhangjinchao01 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3466

Z
zhangjinchao01 已提交
3467 3468 3469 3470
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3471

Z
zhangjinchao01 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3487
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3488 3489 3490 3491 3492

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3493

Z
zhangjinchao01 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3510

Z
zhangjinchao01 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3523

Z
zhangjinchao01 已提交
3524 3525 3526 3527
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3528

3529
_parse_config_hooks = set()
Y
Yu Yang 已提交
3530 3531


3532 3533 3534 3535 3536 3537 3538
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3539

Y
Yu Yang 已提交
3540

3541
def update_g_config():
Z
zhangjinchao01 已提交
3542
    '''
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3566
def begin_parse():
Z
zhangjinchao01 已提交
3567
    init_config_environment()
3568 3569
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3570 3571 3572 3573 3574

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3584 3585 3586 3587
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3588

3589
    begin_parse()
X
xuwei06 已提交
3590 3591
    config_args = {}

Z
zhangjinchao01 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3604 3605
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3606
            make_config_environment("", config_args))
3607
        trainer_config()
H
hanchao 已提交
3608
    else:
3609 3610
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3611

3612
    return update_g_config()
Z
zhangjinchao01 已提交
3613 3614


3615
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3616
    try:
3617
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3618 3619 3620 3621 3622 3623
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3624

Z
zhangjinchao01 已提交
3625 3626 3627 3628 3629 3630 3631 3632
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise