config_parser.py 129.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341
        ScatterAgentLayer(name=name, size=layer.size)
342

Z
zhangjinchao01 已提交
343 344 345 346
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
347

Z
zhangjinchao01 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
361
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
362 363 364 365 366 367 368 369
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
370
                             target_inlinkname="",
Z
zhangjinchao01 已提交
371
                             seq_reversed=False):
372
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
373 374 375 376 377
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
378 379 380 381 382
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
383 384 385 386 387 388 389


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
390
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
391
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
392 393
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
410

Z
zhangjinchao01 已提交
411 412 413 414 415 416
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
417

Z
zhangjinchao01 已提交
418 419
@config_class
class Bias(Cfg):
X
xuwei06 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
436 437
        self.add_keys(locals())

Q
qijun 已提交
438

Z
zhangjinchao01 已提交
439 440 441 442 443 444 445
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
446
            initializer=None,
Z
zhangjinchao01 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
460
            bilinear_interp=None,
Z
zhangjinchao01 已提交
461 462 463 464
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
465
            maxout=None,
Q
qijun 已提交
466
            spp=None,
D
dangqingqing 已提交
467
            pad=None,
Z
zhangjinchao01 已提交
468 469 470 471 472
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
473
            input_layer_argument=None,
D
dangqingqing 已提交
474 475 476 477 478
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
479
        self.add_keys(locals())
D
dangqingqing 已提交
480 481 482
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
483

Q
qijun 已提交
484

Z
zhangjinchao01 已提交
485 486 487
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
488 489
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
490 491 492
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
493
            size=0,  # projection output size
Z
zhangjinchao01 已提交
494 495 496 497 498 499 500 501 502
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
503
            initializer=None,
Z
zhangjinchao01 已提交
504 505 506 507 508 509 510 511 512 513
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
514
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
528

Z
zhangjinchao01 已提交
529 530
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
531

Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
542

Z
zhangjinchao01 已提交
543 544
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
545

Z
zhangjinchao01 已提交
546 547 548
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
549

Z
zhangjinchao01 已提交
550 551 552 553 554 555
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
556 557 558
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
559 560 561 562
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
563

Z
zhangjinchao01 已提交
564 565 566
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
567

Z
zhangjinchao01 已提交
568 569 570 571 572 573 574
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
575

Z
zhangjinchao01 已提交
576 577
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
578

Z
zhangjinchao01 已提交
579 580 581
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
582

X
xuwei06 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
597

Z
zhangjinchao01 已提交
598 599 600 601 602 603
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
604

Z
zhangjinchao01 已提交
605 606 607
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
608

Z
zhangjinchao01 已提交
609 610 611 612 613 614
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
615

Z
zhangjinchao01 已提交
616 617 618
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
619

Z
zhangjinchao01 已提交
620 621 622 623 624 625
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
626

Z
zhangjinchao01 已提交
627 628 629
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
630

Z
zhangjinchao01 已提交
631 632 633 634
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
635 636
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


660
@config_class
661
class ConvBaseProjection(Projection):
Q
qijun 已提交
662 663 664 665 666
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
667
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
668 669 670 671 672 673 674 675 676 677 678 679

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
680 681
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
682 683 684 685 686 687 688

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
689

690 691 692 693 694 695 696 697 698
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
699 700
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
701

702
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
718 719
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
720 721 722

        parse_conv(
            conv_conf,
723
            self.input_layer_name,
724 725 726 727 728 729 730 731
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
732 733 734
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
735 736
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
737 738
    def __init__(
            self,
Q
qijun 已提交
739
            input_layer_names, ):
Z
zhangjinchao01 已提交
740 741 742 743 744 745 746 747 748 749
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
750

Z
zhangjinchao01 已提交
751 752 753
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
754 755 756

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
775 776 777 778 779 780 781

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
782 783 784
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

785 786
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
787
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
788 789 790
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
791 792 793

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

794 795
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
796 797


798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
828 829 830
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
844 845
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
846
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
847
        if padding_y is None:
Q
qijun 已提交
848
            self.padding_y = padding
Z
zhangjinchao01 已提交
849
        if stride_y is None:
Q
qijun 已提交
850
            self.stride_y = stride
Z
zhangjinchao01 已提交
851
        if output_x is not None:
Q
qijun 已提交
852 853
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
854

L
liaogang 已提交
855 856
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
857
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
858 859
        self.add_keys(locals())

Q
qijun 已提交
860

Z
zhangjinchao01 已提交
861 862
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
863 864 865 866 867 868 869 870 871 872 873
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
874
        self.add_keys(locals())
Q
qijun 已提交
875 876


Q
qijun 已提交
877
@config_class
Q
qijun 已提交
878
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
879
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
880
        self.add_keys(locals())
Z
zhangjinchao01 已提交
881

Q
qijun 已提交
882

D
dangqingqing 已提交
883 884 885 886 887 888
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
889 890
@config_class
class Norm(Cfg):
Q
qijun 已提交
891 892 893 894 895 896 897 898 899
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
900 901
        self.add_keys(locals())

Q
qijun 已提交
902

Z
zhangjinchao01 已提交
903 904
@config_class
class Image(Cfg):
Q
qijun 已提交
905
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
906 907
        self.add_keys(locals())

Q
qijun 已提交
908

Z
zhangjinchao01 已提交
909 910
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
911 912 913 914 915 916 917 918 919 920 921 922
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
923 924
        self.add_keys(locals())

Q
qijun 已提交
925

926 927
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
928
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
929 930
        self.add_keys(locals())

Q
qijun 已提交
931

932
def create_data_config_proto(async_load_data=False,
933
                             constant_slots=None,
王益 已提交
934 935 936
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
937 938 939 940 941 942 943 944
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
945 946
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
947

Q
qijun 已提交
948
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
949 950 951 952 953 954
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
955

Z
zhangjinchao01 已提交
956
@config_func
Q
qijun 已提交
957 958 959 960 961
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
962
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
963 964 965 966 967 968 969 970 971
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
972

Z
zhangjinchao01 已提交
973
@config_func
Q
qijun 已提交
974 975 976 977 978 979 980 981 982 983
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
984
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
985 986
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
987

Z
zhangjinchao01 已提交
988 989 990
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
991

Z
zhangjinchao01 已提交
992 993 994
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
995 996
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
997
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
998 999 1000 1001
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1026

Z
zhangjinchao01 已提交
1027
@config_func
Q
qijun 已提交
1028 1029 1030 1031 1032 1033 1034
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1035
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1055

Z
zhangjinchao01 已提交
1056 1057
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1058
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1059 1060 1061 1062 1063
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1064

Z
zhangjinchao01 已提交
1065
@config_func
Q
qijun 已提交
1066 1067 1068 1069 1070 1071 1072
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1073

1074
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1108

L
Luo Tao 已提交
1109 1110
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1111 1112 1113 1114 1115 1116 1117
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1118

1119
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1120
#It is the reverse function of cnn_output_size
1121
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1122 1123 1124
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1125 1126
    return img_size

Q
qijun 已提交
1127

L
Luo Tao 已提交
1128
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1147
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1148
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1149 1150 1151
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1152
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1153
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1154 1155 1156 1157 1158 1159

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1160
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1161

L
Luo Tao 已提交
1162
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1163
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1164

1165
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1166

1167
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1168
        pool_conf.padding = pool.padding
1169
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1170 1171
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1172
                                         not ceil_mode)
D
dangqingqing 已提交
1173 1174
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1175
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1176

Z
zhangjinchao01 已提交
1177

Q
qijun 已提交
1178
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1179
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1180 1181
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1182 1183
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1184
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1185

Q
qijun 已提交
1186

Z
zhangjinchao01 已提交
1187 1188
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1189
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1190
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1191

Z
zhangjinchao01 已提交
1192 1193 1194

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1195 1196 1197 1198 1199
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1200 1201 1202 1203 1204 1205
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1206
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1207
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1208
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1209
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1210 1211 1212
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1213 1214
        norm_conf.scale /= norm.size**2

1215

L
Luo Tao 已提交
1216 1217
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1218
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1228

1229
    if not trans:
1230
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1231
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1232
            get_img_size(input_layer_name, conv.channels)
1233
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1234 1235
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1236 1237 1238
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1239
    else:
1240
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1241
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1242
            get_img_size(input_layer_name, conv.channels)
1243
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1244 1245
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1246
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1247 1248
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1249

1250

Z
zhangjinchao01 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1264
        block_expand_conf.output_x = cnn_output_size(
1265
            block_expand.img_size_x, block_expand.block_x,
1266
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1267 1268

    if block_expand_conf.img_size_y == 0:
1269
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1270
    else:
1271
        block_expand_conf.output_y = cnn_output_size(
1272
            block_expand.img_size_y, block_expand.block_y,
1273
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1274

Q
qijun 已提交
1275

1276
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1277
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1278
    maxout_conf.groups = maxout.groups
1279

Q
qijun 已提交
1280

Z
zhangjinchao01 已提交
1281 1282
# Define an evaluator
@config_func
Y
yangyaming 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1325 1326
    if top_k is not None:
        evaluator.top_k = top_k
1327 1328
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1329

1330 1331 1332
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1345

Z
zhangjinchao01 已提交
1346 1347 1348 1349 1350
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1351
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1352 1353 1354 1355
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1356
            coeff=None):
Z
zhangjinchao01 已提交
1357
        config_assert('@' not in name,
Q
qijun 已提交
1358
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1374
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1375 1376 1377
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1378 1379
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1380 1381 1382 1383 1384 1385 1386
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1387
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1397 1398
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1399 1400 1401 1402 1403 1404 1405 1406
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1407
                self.operators.append(input)
Z
zhangjinchao01 已提交
1408 1409 1410 1411
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1412
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1413
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1414 1415
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1433
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1434
            size,
Q
qijun 已提交
1435 1436 1437
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1438 1439 1440 1441 1442 1443

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1444 1445 1446
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1456 1457
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1458 1459 1460
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1461 1462
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1474 1475
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1476
                    is_static=bias.is_static,
X
xuwei06 已提交
1477 1478
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1479 1480 1481 1482 1483
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1484 1485 1486 1487 1488 1489
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1504 1505
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1506 1507
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1508 1509
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1510 1511 1512 1513 1514 1515
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1516
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1529 1530
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1531 1532 1533 1534
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1535 1536
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1563

Z
zhangjinchao01 已提交
1564 1565
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1566 1567 1568
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1569 1570
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1571

Z
zhangjinchao01 已提交
1572 1573
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1574
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1585 1586
            else:
                sparse = None
Z
zhangjinchao01 已提交
1587

Q
qijun 已提交
1588 1589
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1590 1591
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1592

Z
zhangjinchao01 已提交
1593 1594
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1625 1626
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1639 1640
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1641 1642
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1643

1644 1645
@config_layer('print')
class PrintLayer(LayerBase):
1646
    def __init__(self, name, inputs, format=None):
1647
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1648 1649 1650 1651 1652 1653
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1654

Q
qijun 已提交
1655

Y
yuan 已提交
1656 1657
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1658 1659
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1660
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1661
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1662 1663 1664 1665 1666 1667 1668
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1669
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1670 1671 1672 1673 1674 1675
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1676

1677 1678 1679
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1680
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1702
                 background_id, **xargs):
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


Z
zhangjinchao01 已提交
1723 1724
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1725
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1726 1727
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1728 1729
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1730

Z
zhangjinchao01 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1758 1759


Z
zhangjinchao01 已提交
1760 1761
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1762
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1774

Z
zhangjinchao01 已提交
1775 1776 1777
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1778 1779

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1780 1781 1782
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1783 1784 1785
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1786 1787 1788
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1789

Z
zhangjinchao01 已提交
1790 1791 1792
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1793 1794 1795 1796 1797 1798 1799 1800

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1817
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1830 1831
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1832 1833
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1834 1835
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1846

Z
zhangjinchao01 已提交
1847 1848 1849 1850
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1851

Z
zhangjinchao01 已提交
1852 1853 1854 1855
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1856 1857 1858 1859

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1860 1861 1862 1863 1864 1865 1866 1867

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1868
        super(ConvTransLayerBase, self).__init__(
1869 1870 1871 1872 1873 1874 1875 1876
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1888 1889 1890 1891 1892 1893 1894 1895
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1896
            parse_conv(
1897 1898
                self.inputs[input_index].conv,
                input_layer.name,
1899
                self.config.inputs[input_index].conv_conf,
1900
                num_filters,
1901
                trans=True)
1902 1903 1904
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1905 1906
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1907 1908 1909 1910 1911 1912 1913

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1914
        return conv_conf.channels * conv_conf.filter_channels \
1915 1916
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1917

1918 1919 1920 1921
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1922

1923 1924 1925 1926 1927
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
1928 1929
@config_layer('norm')
class NormLayer(LayerBase):
1930 1931
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1932 1933 1934
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
1935 1936 1937 1938
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
1939 1940 1941
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
1942

Z
zhangjinchao01 已提交
1943 1944 1945

@config_layer('pool')
class PoolLayer(LayerBase):
1946 1947
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1948 1949 1950
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
1951
            parse_pool(self.inputs[input_index].pool, input_layer.name,
1952
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
1953 1954
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
1955

Z
zhangjinchao01 已提交
1956

Q
qijun 已提交
1957 1958
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
1959
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
1960
        super(SpatialPyramidPoolLayer, self).__init__(
1961
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
1962 1963 1964
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
1965 1966 1967
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
1968

Q
qijun 已提交
1969

D
dangqingqing 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


Z
zhangjinchao01 已提交
1989 1990 1991
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
2001 2002 2003 2004
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2005 2006
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2007 2008 2009 2010 2011 2012 2013 2014
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2015 2016 2017 2018 2019 2020
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2021
                    is_shared=is_shared,
D
dangqingqing 已提交
2022
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2023 2024 2025 2026 2027 2028 2029

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
2030
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
2031
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
2032
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2033
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2034 2035 2036 2037 2038 2039

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2040
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2041
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2042
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2043

2044 2045
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2046 2047
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2048
                               image_conf.channels, False)
2049 2050
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2063

Z
zhangjinchao01 已提交
2064 2065
@config_layer('trans')
class TransLayer(LayerBase):
2066
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2067
        super(TransLayer, self).__init__(
2068
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2069 2070 2071
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2072 2073
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2074

Z
zhangjinchao01 已提交
2075 2076
@config_layer('resize')
class ResizeLayer(LayerBase):
2077
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2078
        super(ResizeLayer, self).__init__(
2079
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2080 2081 2082 2083
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2084

2085 2086
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2087
    def __init__(self, name, inputs, height, width, device=None):
2088 2089 2090 2091 2092
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2093
        self.set_layer_height_width(height, width)
2094 2095 2096
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2097 2098
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2099
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2100
        super(BlockExpandLayer, self).__init__(
2101
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2102 2103
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2104 2105
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2106
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2107 2108 2109 2110 2111 2112
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2113

2114 2115
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2116 2117 2118
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2119 2120
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2121
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2122 2123 2124
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
Q
qijun 已提交
2125

2126

D
dangqingqing 已提交
2127 2128 2129 2130
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2131
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2132 2133
        config_assert(
            len(self.inputs) == 1,
2134
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


Z
zhangjinchao01 已提交
2144 2145 2146 2147
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2148

Z
zhangjinchao01 已提交
2149 2150 2151
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2152 2153
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2154

Q
qijun 已提交
2155
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2156 2157 2158
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2159

Z
zhangjinchao01 已提交
2160 2161 2162 2163 2164 2165 2166 2167
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2168
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2169
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2170

Q
qijun 已提交
2171

Z
zhangjinchao01 已提交
2172 2173
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2174
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2175 2176
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2177 2178 2179
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2180 2181 2182 2183 2184 2185 2186 2187
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2188

Z
zhangjinchao01 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2213 2214


Z
zhangjinchao01 已提交
2215 2216
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2217
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2218 2219
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2220
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2221 2222
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2223 2224 2225
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2226 2227
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2228

Z
zhangjinchao01 已提交
2229 2230
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2231 2232 2233 2234 2235 2236 2237 2238
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2239
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2240 2241
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2242 2243
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2244 2245 2246 2247
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2248
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2249 2250 2251
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2252 2253 2254 2255 2256

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2257
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2258 2259 2260 2261
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2262 2263
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2277
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2278 2279
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2280
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2281 2282 2283 2284 2285
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2286

Z
zhangjinchao01 已提交
2287 2288
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2289 2290 2291 2292
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2293 2294 2295

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2296
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2297 2298 2299
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2300

Z
zhangjinchao01 已提交
2301 2302
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2303
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2304 2305 2306
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2307

Z
zhangjinchao01 已提交
2308 2309
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2310 2311 2312 2313 2314
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2315
        for i in range(1, len(inputs)):
Q
qijun 已提交
2316 2317 2318 2319 2320
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2321 2322

@config_func
2323 2324 2325 2326
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2327 2328 2329 2330
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2331

Z
zhangjinchao01 已提交
2332 2333
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2334 2335 2336 2337
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2361
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2362
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2363
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2364
    memory = g_current_submodel.memories.add()
2365 2366
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2367
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2368
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2369
                   boot_with_const_id is not None))
Q
qijun 已提交
2370 2371 2372 2373
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2374 2375 2376
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2377 2378
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2379 2380 2381
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2382
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2383 2384 2385 2386 2387
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2388

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2411 2412 2413 2414
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2424

Z
zhangjinchao01 已提交
2425 2426
@config_layer('expand')
class ExpandLayer(LayerBase):
2427
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2428
        super(ExpandLayer, self).__init__(
2429
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2430 2431 2432 2433 2434 2435 2436 2437
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2438 2439 2440

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2441 2442 2443 2444 2445
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
2446 2447
                 bias=False,
                 **xargs):
Q
qijun 已提交
2448
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
2449
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2450 2451 2452
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2453
            self.config.num_filters = num_filters
Q
qijun 已提交
2454
        else:
Z
zhangjinchao01 已提交
2455
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
2456 2457
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
2458
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2459 2460 2461 2462


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2463 2464 2465 2466 2467
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2468 2469
                 output_max_index=None,
                 **xargs):
2470
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2471
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2472
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2473 2474 2475 2476
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2477 2478
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2479 2480 2481 2482


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2483
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2501
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2502 2503 2504
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2505
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2506 2507
        self.config.eos_id = eos_id

Q
qijun 已提交
2508

Z
zhangjinchao01 已提交
2509 2510
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2511 2512 2513 2514
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2515
                 bias=False,
2516
                 stride=-1,
2517
                 **xargs):
Q
qijun 已提交
2518
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
2519
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2520 2521
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2522
        if trans_type == 'seq':
L
Luo Tao 已提交
2523
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2524
        self.config.trans_type = trans_type
2525 2526
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2527 2528
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2529

Z
zhangjinchao01 已提交
2530 2531
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2532 2533 2534 2535 2536
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2537
                 stride=-1,
2538
                 **xargs):
Q
qijun 已提交
2539
        super(SequenceFirstInstanceLayer, self).__init__(
2540 2541 2542 2543 2544 2545
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2546 2547
        self.config.select_first = True

Q
qijun 已提交
2548

Z
zhangjinchao01 已提交
2549 2550
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
2551
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2552
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
2553
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2554 2555
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2556 2557 2558 2559 2560
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2561

Z
zhangjinchao01 已提交
2562 2563
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
2564
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
2565
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
2566
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
2567 2568
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2569 2570 2571
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2572

Z
zhangjinchao01 已提交
2573 2574
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
2575
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2576
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
2577
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2578 2579 2580 2581 2582 2583
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2584

Z
zhangjinchao01 已提交
2585 2586
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2587 2588 2589
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2590 2591 2592 2593 2594
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2595

Z
zhangjinchao01 已提交
2596 2597
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2598 2599 2600
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2601 2602 2603 2604
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2605 2606 2607
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2608 2609 2610

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2611 2612 2613
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2614 2615 2616 2617 2618 2619
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2620

Z
zhangjinchao01 已提交
2621 2622
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2623 2624 2625
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2626 2627 2628 2629
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2630 2631 2632
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2633 2634 2635

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2636 2637 2638
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2639 2640 2641 2642
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2643

Z
zhangjinchao01 已提交
2644 2645
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2646
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2647
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2648 2649 2650
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2651 2652 2653
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2654 2655
        self.set_layer_size(size)

Q
qijun 已提交
2656

Z
zhangjinchao01 已提交
2657 2658
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2659
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2660 2661
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2662 2663
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2664 2665 2666 2667 2668 2669 2670 2671
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2672

L
liaogang 已提交
2673 2674
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2675
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2676
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2677
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2678
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2679 2680 2681 2682
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2683

L
liaogang 已提交
2684

Z
zhangjinchao01 已提交
2685 2686
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2687
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2688
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2689 2690 2691
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2692 2693 2694
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2695

Z
zhangjinchao01 已提交
2696 2697
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2698
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2699
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2700
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2701
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2702 2703
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2704 2705 2706
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2707

Q
qijun 已提交
2708

Z
zhangjinchao01 已提交
2709 2710
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2711
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2712 2713
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2714 2715
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2728 2729 2730 2731 2732
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
2733 2734
                 bias=False,
                 **xargs):
Q
qijun 已提交
2735
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
2736
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2737
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2738
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2739 2740 2741 2742 2743 2744
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2745

Z
zhangjinchao01 已提交
2746 2747
@config_layer('cos')
class CosSimLayer(LayerBase):
2748
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
2749 2750 2751 2752 2753 2754
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2755
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2756 2757 2758 2759


@config_layer('tensor')
class TensorLayer(LayerBase):
2760
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
2761
        super(TensorLayer, self).__init__(
2762
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2763 2764
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2765 2766
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2777 2778 2779 2780 2781 2782 2783
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2801
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2802 2803 2804
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2805
            else:
2806 2807
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2808 2809 2810 2811
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2812 2813 2814 2815
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2816 2817 2818
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2819
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2820 2821 2822
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2823
            elif isinstance(input, Projection):
Q
qijun 已提交
2824 2825 2826 2827 2828 2829
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2841 2842
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2854 2855 2856 2857 2858 2859
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2860

2861 2862 2863
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2864

2865 2866
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2867

Q
qijun 已提交
2868

Z
zhangjinchao01 已提交
2869 2870
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2871
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2872 2873
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2874

Z
zhangjinchao01 已提交
2875 2876
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2877
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2878
        config_assert(inputs, 'inputs cannot be empty')
2879
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2880 2881 2882 2883 2884 2885
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2886
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2887 2888 2889 2890
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2891

Z
zhangjinchao01 已提交
2892 2893 2894
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2895
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2896 2897 2898
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2899 2900

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2901 2902 2903 2904 2905 2906
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2907

Z
zhangjinchao01 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2928
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2929
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2930
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2931 2932
            self.create_input_parameter(input_index, psize, dims)

2933 2934 2935 2936 2937 2938 2939
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2940 2941 2942
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2943

Q
qijun 已提交
2944

Z
zhangjinchao01 已提交
2945 2946
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
2947
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2948 2949
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2959

Z
zhangjinchao01 已提交
2960 2961
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
2962 2963 2964 2965 2966 2967 2968 2969
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2970 2971 2972 2973 2974 2975 2976 2977
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2978
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2979 2980 2981 2982 2983
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
2984

Z
zhangjinchao01 已提交
2985 2986
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
2997 2998 2999
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3000 3001 3002 3003 3004
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3005 3006 3007
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3008

Z
zhangjinchao01 已提交
3009 3010 3011
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3012 3013 3014 3015
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3016 3017 3018 3019
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3020

Z
zhangjinchao01 已提交
3021 3022
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3023 3024 3025 3026 3027 3028 3029 3030
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3031 3032
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3033 3034 3035 3036
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3037 3038
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3039
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3040
        self.set_layer_size(size)
Q
qijun 已提交
3041
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3042 3043 3044
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3045 3046
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3047
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3048 3049
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3050 3051 3052

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3064 3065 3066 3067 3068 3069
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3070
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3071 3072 3073
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3074

Z
zhangjinchao01 已提交
3075 3076
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3077 3078 3079 3080 3081 3082 3083
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3084 3085
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3086 3087 3088
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3089 3090 3091 3092 3093
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3094
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3095 3096
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3097

Z
zhangjinchao01 已提交
3098 3099 3100 3101 3102 3103 3104
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3105 3106


Z
zhangjinchao01 已提交
3107 3108
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3109
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3110
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3111 3112
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3113
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3114 3115
        self.config.coeff = coeff

Q
qijun 已提交
3116

Z
zhangjinchao01 已提交
3117 3118 3119 3120 3121 3122 3123 3124
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3125 3126


Z
zhangjinchao01 已提交
3127 3128
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3129
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3130 3131 3132 3133 3134
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3135
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3136

Q
qijun 已提交
3137

Z
zhangjinchao01 已提交
3138 3139
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3140
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3141 3142 3143 3144
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3167 3168
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3169
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3170 3171 3172 3173 3174 3175
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3176
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3177 3178 3179 3180
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3181
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3182
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3183

Q
qijun 已提交
3184

Z
zhangjinchao01 已提交
3185
@config_func
Q
qijun 已提交
3186
def ParameterHook(type, **kwargs):
3187
    if type == 'pruning':
Z
zhangjinchao01 已提交
3188 3189
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3190
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3191 3192
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3193 3194 3195 3196 3197 3198
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3220 3221
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3222 3223 3224 3225 3226 3227 3228

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3240 3241
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3242 3243 3244 3245 3246

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3247 3248 3249 3250
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3251

Q
qijun 已提交
3252 3253
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3254 3255 3256
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3257 3258 3259 3260 3261 3262
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3263 3264
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3265 3266
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3267 3268
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3269 3270 3271 3272 3273 3274
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3275 3276 3277
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3278 3279 3280 3281
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3282 3283 3284 3285 3286 3287 3288

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3289 3290 3291 3292
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3293 3294
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3295 3296 3297 3298 3299

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3300
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
3301 3302 3303 3304 3305

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3306
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
3307 3308

    g_parameter_map[name] = para
X
xuwei06 已提交
3309 3310 3311 3312 3313
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
3314 3315 3316 3317 3318 3319 3320


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3321

Z
zhangjinchao01 已提交
3322 3323 3324 3325 3326
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3327

Z
zhangjinchao01 已提交
3328 3329 3330 3331 3332
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3333

Z
zhangjinchao01 已提交
3334 3335 3336 3337 3338
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3339

Z
zhangjinchao01 已提交
3340 3341 3342 3343 3344
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3345

Z
zhangjinchao01 已提交
3346 3347 3348 3349 3350
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3351

Z
zhangjinchao01 已提交
3352 3353 3354 3355 3356
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3357

Z
zhangjinchao01 已提交
3358 3359 3360 3361 3362
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3363

Z
zhangjinchao01 已提交
3364 3365 3366 3367 3368
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3369

Z
zhangjinchao01 已提交
3370 3371 3372 3373 3374
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3375

Z
zhangjinchao01 已提交
3376 3377 3378 3379 3380
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3381

Z
zhangjinchao01 已提交
3382 3383 3384 3385 3386
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3387 3388 3389
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3390 3391
    return Import

Q
qijun 已提交
3392

X
xuwei06 已提交
3393
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3394 3395 3396 3397 3398
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3399
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3422 3423 3424
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3425

X
xuwei06 已提交
3426
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3427

Q
qijun 已提交
3428
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3429 3430 3431 3432

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3433 3434
    start_pass=0, )

Z
zhangjinchao01 已提交
3435 3436 3437 3438 3439

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3440 3441
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3453

Z
zhangjinchao01 已提交
3454 3455 3456 3457
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3458

Z
zhangjinchao01 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3468

Z
zhangjinchao01 已提交
3469 3470 3471 3472
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3473

Z
zhangjinchao01 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3489
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3490 3491 3492 3493 3494

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3495

Z
zhangjinchao01 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3512

Z
zhangjinchao01 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3525

Z
zhangjinchao01 已提交
3526 3527 3528 3529
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3530

3531
_parse_config_hooks = set()
Y
Yu Yang 已提交
3532 3533


3534 3535 3536 3537 3538 3539 3540
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3541

Y
Yu Yang 已提交
3542

3543
def update_g_config():
Z
zhangjinchao01 已提交
3544
    '''
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3568
def begin_parse():
Z
zhangjinchao01 已提交
3569
    init_config_environment()
3570 3571
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3572 3573 3574 3575 3576

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3586 3587 3588 3589
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3590

3591
    begin_parse()
X
xuwei06 已提交
3592 3593
    config_args = {}

Z
zhangjinchao01 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3606 3607
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3608
            make_config_environment("", config_args))
3609
        trainer_config()
H
hanchao 已提交
3610
    else:
3611 3612
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3613

3614
    return update_g_config()
Z
zhangjinchao01 已提交
3615 3616


3617
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3618
    try:
3619
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3620 3621 3622 3623 3624 3625
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3626

Z
zhangjinchao01 已提交
3627 3628 3629 3630 3631 3632 3633 3634
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise