/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "boost/optional.hpp" #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace platform { using framework::DataLayout; using framework::Tensor; using user_function = std::function(const float*)>; using memory = mkldnn::memory; template class MKLDNNHandlerT { public: MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, platform::Place cpu_place, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), place_(cpu_place), key_common_(base_key), fwd_pd_(nullptr), bwd_pd_(nullptr) { if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() != platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) { key_ = key_common_; } else { key_ = key_common_ + "-t:" + ThreadIDasStr(); } } std::shared_ptr AcquireForwardPrimitive() { const std::string key_p = key_ + "@forward_p"; auto forward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (forward_p == nullptr) { forward_p = std::make_shared(*fwd_pd_); dev_ctx_.SetBlob(key_p, forward_p); } return forward_p; } std::shared_ptr AcquireBackwardPrimitive() { const std::string key_p = key_ + "@backward_p"; auto backward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (backward_p == nullptr) { backward_p = std::make_shared(*bwd_pd_); dev_ctx_.SetBlob(key_p, backward_p); } return backward_p; } std::shared_ptr AcquireSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive( fwd_pd_->src_desc(), to_void_cast(input_data), "@src_mem_p"); } std::shared_ptr AcquireDstMemory(framework::Tensor* output) { T* ptr = output->mutable_data(place_, fwd_pd_->dst_desc().get_size()); return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireDstMemory( const framework::Tensor* output) { const T* output_data = output->data(); return this->AcquireMemoryFromPrimitive( bwd_pd_->dst_desc(), to_void_cast(output_data), "@bwd-dst_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const framework::Tensor* diffdst) { const T* ptr = diffdst->data(); return this->AcquireMemoryFromPrimitive( bwd_pd_->diff_dst_desc(), to_void_cast(ptr), "@diff_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory( framework::Tensor* diffsrc) { T* ptr = diffsrc->mutable_data(place_, bwd_pd_->diff_src_desc().get_size()); return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p"); } protected: bool isCached() { const std::string key_pd = key_common_ + "@forward_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); return (fwd_pd_ != nullptr); } template void AcquireForwardPrimitiveDescriptor(Args&&... args) { // Forward PD has to be passed to Grad op that // may be executed by diffrent thread, hence // for that one we use key that does not contain TID const std::string key_pd = key_common_ + "@forward_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (fwd_pd_ == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (fwd_pd_ == nullptr) { auto fwd_desc = typename TForward::desc(std::forward(args)...); fwd_pd_ = std::make_shared(fwd_desc, engine_); dev_ctx_.SetBlob(key_pd, fwd_pd_); } } } template void AcquireBackwardPrimitiveDescriptor(Args&&... args) { const std::string key_fwd_pd = key_common_ + "@forward_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_fwd_pd)); PADDLE_ENFORCE_NOT_NULL(fwd_pd_); const std::string key_pd = key_ + "@backward_pd"; bwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_pd_ == nullptr) { auto bwd_desc = typename TBackward::desc(std::forward(args)...); bwd_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); dev_ctx_.SetBlob(key_pd, bwd_pd_); } } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::desc md, void* ptr, const std::string& suffix) { auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } const MKLDNNDeviceContext& dev_ctx_; mkldnn::engine engine_; platform::Place place_; std::string key_; std::string key_common_; std::shared_ptr fwd_pd_; std::shared_ptr bwd_pd_; }; // TODO(grygielski) this class will be deleted later. class MKLDNNHandler { public: MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) { if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() != platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) { key_ = key_common_; } else { key_ = key_common_ + "-t:" + ThreadIDasStr(); } } std::shared_ptr AcquireSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_src_mem_p"); } std::shared_ptr AcquireDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p"); } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::desc md, void* ptr, const std::string& suffix) { auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } // This incarnation of AcquireMemory can call user function eg. custom reorder // or preprocessing routine if needed std::shared_ptr AcquireMemory( const mkldnn::memory::desc& md, void* ptr, const std::string& suffix, user_function custom_func = {}) { /*Generate key*/ auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { // Call custom reorder/preprocessing func if available if (custom_func) { auto reordered_data = custom_func(reinterpret_cast(ptr)); dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data); ptr = reinterpret_cast(reordered_data.get()); } mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemory( const std::vector& dims, const mkldnn::memory::data_type dtype, const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) { /*Generate key*/ auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto md = mkldnn::memory::desc(dims, dtype, fmt); mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemory( const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p, const std::string& suffix, std::vector& pipeline) { // NOLINT auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto stored_reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (stored_reorder_p) { pipeline.push_back(*stored_reorder_p); } else { auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); dev_ctx_.SetBlob(key_reorder_p, reorder_p); mkldnn::stream astream(engine_); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } return target_memory_p; } std::shared_ptr AcquireMemory( mkldnn::memory::desc& md, // NOLINT mkldnn::memory::desc& user_md, // NOLINT const std::shared_ptr user_memory_p, const std::string& suffix, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // create reorder primitive if the input format is not the preferred one auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto target_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); mkldnn::stream astream(engine_); if (target_memory_p == nullptr) { target_memory_p = user_memory_p; if (md != user_md) { target_memory_p = std::make_shared(md, engine_); std::shared_ptr reorder_pd; if (is_INT8) { mkldnn::primitive_attr attri; // attribute for int8 weights and bias data reorder. attri.set_output_scales(mask, scale_data); reorder_pd = std::shared_ptr( new mkldnn::reorder::primitive_desc(*user_memory_p, *target_memory_p, attri)); } else { reorder_pd = std::shared_ptr( new mkldnn::reorder::primitive_desc(*user_memory_p, *target_memory_p)); } auto reorder_p = std::shared_ptr(new mkldnn::reorder(*reorder_pd)); dev_ctx_.SetBlob(key_reorder_p, reorder_p); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } dev_ctx_.SetBlob(local_key, target_memory_p); } else if (!is_persistent) { // Make reorder if needed auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p != nullptr) { reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } } return target_memory_p; } protected: const MKLDNNDeviceContext& dev_ctx_; mkldnn::engine engine_; std::string key_; std::string key_common_; }; template class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT { public: BinaryMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, const mkldnn::engine engine, platform::Place cpu_place, const Tensor* x, const Tensor* y, Tensor* z, const std::string uniq_name) : platform::MKLDNNHandlerT( dev_ctx, engine, cpu_place, platform::CreateKey(framework::vectorize(x->dims()), uniq_name)) { if (!this->isCached()) { PADDLE_ENFORCE_EQ( x->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for X tensor")); PADDLE_ENFORCE_NE( x->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for X tensor")); PADDLE_ENFORCE_EQ( y->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for Y tensor")); PADDLE_ENFORCE_NE( y->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for Y tensor")); const auto src_x_tz = framework::vectorize(x->dims()); const auto src_y_tz = framework::vectorize(y->dims()); const auto dst_tz = framework::vectorize(z->dims()); // TODO(jczaja): Add function checking if data already exists const auto src0_md = dnnl::memory::desc( src_x_tz, platform::MKLDNNGetDataType(), x->format()); const auto src1_md = dnnl::memory::desc( src_y_tz, platform::MKLDNNGetDataType(), y->format()); const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType(), MKLDNNMemoryFormat::any); // Currently MKL-DNN kernel supports only Z <- X + Y, shape(X) == shape(Y) // TODO(jczaja): Binary primitive support broadcasting, so we can support // this in kernel this->AcquireForwardPrimitiveDescriptor(dnnl::algorithm::binary_add, src0_md, src1_md, dst_md); } } std::shared_ptr AcquireSecondSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive( this->fwd_pd_->src_desc(), to_void_cast(input_data), "@src1_mem_p"); } }; class SumMKLDNNHandler : public MKLDNNHandler { public: SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) {} std::shared_ptr AcquireSumPrimitiveDescriptor( const std::vector>& src_mems, const std::vector& scales, const mkldnn::memory::desc& dst_md) { const std::string key_sum_pd = key_ + "@sum_pd"; sum_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_sum_pd)); if (sum_pd_ == nullptr) { // Get vector of inputs primitive descriptors std::vector src_ds; for (auto& input_mem : src_mems) { src_ds.push_back(input_mem->get_desc()); } sum_pd_.reset( new mkldnn::sum::primitive_desc(dst_md, scales, src_ds, engine_)); dev_ctx_.SetBlob(key_sum_pd, sum_pd_); } return sum_pd_; } std::shared_ptr AcquireDstMemoryFromPrimitive(void* ptr) { return this->AcquireMemoryFromPrimitive(sum_pd_->dst_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireSecondSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_src2_mem_p"); } std::shared_ptr AcquireSum() { auto prim_key = key_ + "@sum_p"; auto sum_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (sum_p == nullptr) { sum_p = std::make_shared(*sum_pd_); dev_ctx_.SetBlob(prim_key, sum_p); } return sum_p; } private: std::shared_ptr sum_pd_; }; template class ActivationMKLDNNHandler : public MKLDNNHandlerT { public: ActivationMKLDNNHandler(const std::vector& dims, mkldnn::algorithm algorithm, float alpha, float beta, const MKLDNNMemoryFormat fmt, const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place, const std::string& unique_name) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(dims, "a", algorithm, unique_name)) { auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType(), fmt); this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training, algorithm, md, alpha, beta); } ActivationMKLDNNHandler(const std::vector& dims, mkldnn::algorithm algorithm, float alpha, float beta, const MKLDNNMemoryFormat fmt, const MKLDNNMemoryFormat diff_fmt, const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place, const std::string& unique_name) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(dims, "a", algorithm, unique_name)) { auto diff_dst_md = platform::MKLDNNMemDesc( dims, platform::MKLDNNGetDataType(), diff_fmt); auto src_md = platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType(), fmt); this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md, alpha, beta); } std::shared_ptr AcquireBackwardSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(), to_void_cast(input_data), "@bwd-src_mem_p"); } }; template class LRNMKLDNNHandler : public MKLDNNHandlerT { public: LRNMKLDNNHandler(const std::vector& dims, const int n, const float alpha, const float beta, const float k, const MKLDNNMemoryFormat fmt, bool is_test, const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place, const std::string& unique_name) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(dims, unique_name)) { auto src_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType(), fmt); this->AcquireForwardPrimitiveDescriptor( is_test ? mkldnn::prop_kind::forward_inference : mkldnn::prop_kind::forward_training, mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k); } LRNMKLDNNHandler(const std::vector& dims, const int n, const float alpha, const float beta, const float k, const MKLDNNMemoryFormat fmt, const MKLDNNMemoryFormat diff_fmt, const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place, const std::string& unique_name) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(dims, unique_name)) { auto src_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType(), fmt); auto diff_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType(), diff_fmt); this->AcquireBackwardPrimitiveDescriptor( mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta, k); } std::shared_ptr AcquireWorkspaceMemory( framework::Tensor* workspace) { T* ptr = workspace->mutable_data( this->place_, this->fwd_pd_->workspace_desc().get_size()); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(), ptr, "@wrk_mem_p"); } std::shared_ptr AcquireBackwardWorkspaceMemory( const framework::Tensor* workspace) { const T* workspace_data = workspace->data(); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(), to_void_cast(workspace_data), "@bwd-wrk_mem_p"); } }; template class PoolingMKLDNNHandler : public MKLDNNHandlerT { public: PoolingMKLDNNHandler( const std::vector& src_dims, const std::vector& dst_dims, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string& pooling_type, bool ceil_mode, const MKLDNNMemoryFormat fmt, mkldnn::memory::data_type dt, bool is_test, const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place, const std::string& unique_name, bool exclude_padding) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(src_dims, dt, unique_name)) { auto src_md = mkldnn::memory::desc(src_dims, dt, fmt); /* create memory descriptor for pooling without specified format * ('any') which lets a primitive (pooling in this case) choose * the memory format preferred for best performance */ auto dst_md = platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any); auto mkldnn_paddings = ToMkldnnPadding(paddings); if (ceil_mode) { CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides, mkldnn_paddings[1]); } this->AcquireForwardPrimitiveDescriptor( is_test ? mkldnn::prop_kind::forward_inference : mkldnn::prop_kind::forward_training, pooling_type == "max" ? mkldnn::algorithm::pooling_max : (exclude_padding ? mkldnn::algorithm::pooling_avg_exclude_padding : mkldnn::algorithm::pooling_avg_include_padding), src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]); } PoolingMKLDNNHandler( const std::vector& diff_dst_dims, const std::vector& diff_src_dims, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string& pooling_type, bool ceil_mode, const MKLDNNMemoryFormat fmt, const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt, const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place, const std::string& unique_name, bool exclude_padding) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(diff_src_dims, dt, unique_name)) { auto diff_dst_md = mkldnn::memory::desc( diff_dst_dims, platform::MKLDNNGetDataType(), diff_dst_fmt); auto diff_src_md = mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType(), MKLDNNMemoryFormat::any); auto mkldnn_paddings = ToMkldnnPadding(paddings); this->AcquireBackwardPrimitiveDescriptor( pooling_type == "max" ? mkldnn::algorithm::pooling_max : (exclude_padding ? mkldnn::algorithm::pooling_avg_exclude_padding : mkldnn::algorithm::pooling_avg_include_padding), diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]); } std::shared_ptr AcquireWorkspaceMemory(void) { mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc(); // Pooling PD has to be passed to Grad op that // may be executed by diffrent thread, hence // for that one we use key that does not contain TID auto local_key = this->key_common_ + "@workspace"; auto mem_p = std::static_pointer_cast( this->dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); mem_p = std::static_pointer_cast( this->dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(workspace_md, this->engine_); this->dev_ctx_.SetBlob(local_key, mem_p); } } return mem_p; } private: static inline int ComputeCeiledOutput(int input_size, int kernel_size, int padding, int stride) { return (input_size - kernel_size + 2 * padding) / stride + 1; } static inline void CorrectOutputSize( const std::vector& src_tz, const std::vector& dst_tz, const std::vector& kernel_size, const std::vector& paddings, const std::vector& strides, std::vector& right_bot_padding) { // NOLINT for (size_t i = 0; i < right_bot_padding.size(); i++) { int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i], paddings[i], strides[i]); if (desired_size != dst_tz[i + 2]) { right_bot_padding[i] += strides[i] - 1; } } } }; template class TransposeMKLDNNHandler : public MKLDNNHandler { public: TransposeMKLDNNHandler(std::vector& dims, // NOLINT std::vector& axis, // NOLINT const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), axis_(axis), logical_axis_(dims.size(), 0) {} std::shared_ptr AcquireSrcMemory( const MKLDNNMemoryFormat& fmt, void* ptr) { auto local_key = key_ + "@user_src_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { // Make memory descriptor using input format, unless it // cannot be trusted (nchw) then make up memory fmt manually for (size_t i = 0; i < logical_axis_.size(); ++i) { logical_axis_[i] = i; } auto src_md = fmt != MKLDNNMemoryFormat::nchw ? platform::MKLDNNMemDesc( dims_, platform::MKLDNNGetDataType(), fmt) : Axis2MemoryDesc(dims_, logical_axis_); mem_p = std::make_shared(src_md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireDstMemory(framework::Tensor* output, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_md = Axis2MemoryDesc(dims_, axis_); auto dst_data = output->mutable_data(place, dst_md.get_size()); mem_p = std::make_shared(dst_md, engine_, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { auto dst_data = output->mutable_data(place); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireTranspose( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@transpose_p"; auto transpose_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (transpose_p == nullptr) { transpose_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, transpose_p); } return transpose_p; } protected: mkldnn::memory::desc Axis2MemoryDesc(std::vector& nchw_tz, // NOLINT std::vector& axis // NOLINT ) { size_t ndims = axis.size(); std::vector strides(ndims); unsigned int total_stride = 1; for (int i = ndims - 1; i >= 0; --i) { strides[axis[i]] = total_stride; total_stride *= nchw_tz[axis[i]]; } mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType(), strides); return mem_d; } private: std::vector dims_; std::vector axis_; std::vector logical_axis_; }; class ReorderMKLDNNHandler : public MKLDNNHandler { public: ReorderMKLDNNHandler(std::vector& dims, // NOLINT framework::proto::VarType::Type vtype, mkldnn::memory::data_type dtype, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), vtype_(vtype), dtype_(dtype) {} std::shared_ptr AcquireSrcMemory( const MKLDNNMemoryFormat& fmt, void* ptr) { return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p"); } std::shared_ptr AcquireDstMemory( framework::Tensor* output, const MKLDNNMemoryFormat& fmt, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt); auto dst_data = output->mutable_data(place, vtype_); mem_p = std::make_shared(dst_md, engine_, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { auto dst_data = output->mutable_data(place, vtype_); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@reorder_p"; auto reorder_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (reorder_p == nullptr) { reorder_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, reorder_p); } return reorder_p; } private: std::vector dims_; framework::proto::VarType::Type vtype_; mkldnn::memory::data_type dtype_; }; template struct convolutional_algorithm; template <> struct convolutional_algorithm { static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct; }; template <> struct convolutional_algorithm { static constexpr mkldnn::algorithm T = mkldnn::algorithm::deconvolution_direct; }; template class ConvMKLDNNTemplateHandler : public MKLDNNHandler { public: ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) {} // TODO(jczaja): remove after conv int8 is adapted ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) { conv_pd_ = conv_pd; } ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, std::shared_ptr conv_bwd_data_pd, std::shared_ptr conv_bwd_weights_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), conv_pd_(conv_pd), conv_bwd_weights_pd_(conv_bwd_weights_pd), conv_bwd_data_pd_(conv_bwd_data_pd) { // If we are in Grad operatgor then update a key with BWD suffix to // distinguish from FWD memory primitives key_ += "-BWD"; } size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); } MKLDNNMemoryFormat GetDstFormat() const { return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc()); } size_t GetDiffWeightsMemorySize() const { return conv_bwd_weights_pd_->diff_weights_desc().get_size(); } size_t GetDiffSourceMemorySize() const { return conv_bwd_data_pd_->diff_src_desc().get_size(); } std::shared_ptr AcquireSrcMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_bwd_weights_pd_->src_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@weights-src_mem_p", pipeline); } std::shared_ptr AcquireDiffDstMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@weights-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireDiffWeightsMemoryFromWeightsPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive( conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p"); } std::shared_ptr AcquireDiffDstMemoryFromDataPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@data-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemoryFromDataPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline) { // NOLINT auto weights_pd = conv_bwd_data_pd_->weights_desc(); auto user_pd = user_weights_memory_p->get_desc(); return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p, "@data-weights_mem_p", pipeline); } std::shared_ptr AcquireResidualDataMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p"); } std::shared_ptr AcquireDstMemoryFromResidualDataMemory( const std::shared_ptr& user_residual_memory_p, void* dst_ptr, std::vector& pipeline) { // NOLINT return this->AcquireMemory(user_residual_memory_p, this->AcquireDstMemoryFromPrimitive(dst_ptr), "@residual_data_mem_p", pipeline); } std::shared_ptr AcquireDiffSrcMemoryFromDataPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(), ptr, "@diff_src_mem_p"); } std::shared_ptr AcquireDstMemoryFromPrimitive(void* ptr) { return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireSrcMemoryFromPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_pd_->src_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemory( const mkldnn::memory::desc& md, void* ptr, user_function custom_func = {}) { return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func); } std::shared_ptr AcquireBiasMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_bias_mem_p"); } std::shared_ptr AcquireWeightsMemoryFromPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { auto user_weights_pd = user_weights_memory_p->get_desc(); auto weights_pd = conv_pd_->weights_desc(); return this->AcquireMemory( weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } std::shared_ptr AcquireBiasMemoryFromPrimitive( const std::shared_ptr user_bias_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // NOLINT auto user_bias_pd = user_bias_memory_p->get_desc(); auto bias_pd = conv_pd_->bias_desc(); return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p, "@bias_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } mkldnn::primitive_attr CreatePostOps( std::string fuse_activation, float fuse_alpha, float fuse_beta, bool fuse_residual_conn, const std::vector output_shift_scale = {}, float sum_scale = 1.0f) const { mkldnn::primitive_attr conv_attr; mkldnn::post_ops post_operations; if (output_shift_scale.size() > 0) { int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0; conv_attr.set_output_scales(mask, output_shift_scale); } // Fusion with Elementwise layer relies on adding a sum post-operation with // the scale parameter. It is assumed that when fuse_residual_connection is // true, the output tensor contains the data coming from residual // connection. The result of this post_op is: // Output = scale * Output + Conv_Out. if (fuse_residual_conn) { post_operations.append_sum(sum_scale); } // Fusion with ReLU layer is executed through the PostOps feature. Create a // PostOps object and configure it to execute an eltwise relu operation. if (fuse_activation == "relu" || fuse_activation == "leaky_relu") { constexpr float scale = 1.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu, fuse_alpha, fuse_beta); } else if (fuse_activation == "relu6") { constexpr float scale = 1.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_bounded_relu, fuse_alpha, fuse_beta); } else if (fuse_activation == "swish") { constexpr float scale = 1.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish, fuse_alpha, fuse_beta); } conv_attr.set_post_ops(post_operations); return conv_attr; } std::shared_ptr AcquireConvolutionPrimitiveDescriptor( const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights, boost::optional bias, const mkldnn::memory::desc& dst, const std::vector& strides, const std::vector& paddings, const mkldnn::engine& engine, const std::string& fuse_activation, float fuse_alpha, float fuse_beta, const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind, const std::vector output_shift_scale = {}, const float sum_scale = 1.0f) { // Conv PD has to be passed to Grad op that // may be exxecuted by diffrent thread, hence // for that one we use key that does not contain TID const std::string key_conv_pd = key_common_ + "@conv_pd"; conv_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_conv_pd)); if (conv_pd_ == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); conv_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_conv_pd)); if (conv_pd_ == nullptr) { mkldnn::memory::dims stride_dims = strides; auto mkldnn_paddings = ToMkldnnPadding(paddings); auto conv_desc = bias ? typename forward_t::desc( fwd_prop_kind, convolutional_algorithm::T, src, weights, *bias, dst, stride_dims, mkldnn_paddings[0], mkldnn_paddings[1]) : typename forward_t::desc( fwd_prop_kind, convolutional_algorithm::T, src, weights, dst, stride_dims, mkldnn_paddings[0], mkldnn_paddings[1]); mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn, output_shift_scale, sum_scale); conv_pd_.reset(new typename forward_t::primitive_desc( conv_desc, conv_attr, engine)); // Save conv_pd/src_memory/weights_memory for backward pass dev_ctx_.SetBlob(key_conv_pd, conv_pd_); } } return conv_pd_; } std::shared_ptr AcquireConvolution() { auto prim_key = key_ + "@conv_p"; auto conv_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_p == nullptr) { conv_p = std::make_shared(*conv_pd_); dev_ctx_.SetBlob(prim_key, conv_p); } return conv_p; } std::shared_ptr AcquireConvolutionBackwardWeights() { auto prim_key = key_ + "@conv_bwd_weights_p"; auto conv_bwd_weights_p = std::static_pointer_cast( dev_ctx_.GetBlob(prim_key)); if (conv_bwd_weights_p == nullptr) { // create backward conv primitive for weights conv_bwd_weights_p = std::make_shared(*conv_bwd_weights_pd_); dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p); } return conv_bwd_weights_p; } std::shared_ptr AcquireConvolutionBackwardData() { auto prim_key = key_ + "@conv_bwd_data_p"; auto conv_bwd_data_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_bwd_data_p == nullptr) { conv_bwd_data_p = std::make_shared(*conv_bwd_data_pd_); dev_ctx_.SetBlob(prim_key, conv_bwd_data_p); } return conv_bwd_data_p; } private: std::shared_ptr conv_pd_; std::shared_ptr conv_bwd_weights_pd_; std::shared_ptr conv_bwd_data_pd_; }; using ConvMKLDNNHandler = ConvMKLDNNTemplateHandler; using ConvTransposeMKLDNNHandler = ConvMKLDNNTemplateHandler; template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler) { T* output_data = output->mutable_data(ctx.GetPlace(), handler->GetDstMemorySize()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromPrimitive(to_void_cast(output_data)); return dst_memory_p; } template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const framework::Tensor* residual_param, const mkldnn::memory::desc& user_residual_md, const std::shared_ptr& handler, std::vector* pipeline) { const T* residual_param_data = residual_param->data(); PADDLE_ENFORCE(residual_param_data != nullptr, "Provide data if you want MKLDNN conv+elementwise_add fusion"); std::shared_ptr user_residual_memory_p = handler->AcquireResidualDataMemory(user_residual_md, to_void_cast(residual_param_data)); T* output_data = output->mutable_data(ctx.GetPlace()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory( user_residual_memory_p, to_void_cast(output_data), *pipeline); return dst_memory_p; } template static void SetDstMemoryHandler( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler, std::shared_ptr dst_memory_p) { T* output_data = output->mutable_data(ctx.GetPlace(), handler->GetDstMemorySize()); dst_memory_p->set_data_handle(to_void_cast(output_data)); } template static void SetDstMemoryQuantized( const framework::ExecutionContext& ctx, framework::Tensor* output, std::vector dst_tz, const mkldnn::engine& engine, std::shared_ptr& dst_md, // NOLINT std::shared_ptr& dst_memory, // NOLINT MKLDNNMemoryFormat output_format) { T* output_data = output->mutable_data(ctx.GetPlace()); const size_t dst_dims = dst_tz.size(); MKLDNNMemoryFormat dst_fmt; PADDLE_ENFORCE_LE(dst_dims, 5, "Dst memory for quantization can not have dims > 5"); dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format); auto tmp_dst_md = platform::MKLDNNMemDesc( {dst_tz}, paddle::framework::ToMKLDNNDataType( framework::DataTypeTrait::DataType()), dst_fmt); dst_md.reset(new mkldnn::memory::desc(tmp_dst_md)); dst_memory.reset( new mkldnn::memory(*dst_md, engine, to_void_cast(output_data))); } } // namespace platform } // namespace paddle