build_cinn_pass.cc 24.7 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
54
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
55

56
namespace {
57 58 59 60
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
81 82
      PADDLE_ENFORCE_NE(desc,
                        nullptr,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

119 120 121 122 123 124 125 126 127 128
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

129 130 131 132 133
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
R
Ruibiao Chen 已提交
134
      op_roles.insert(PADDLE_GET_CONST(int, n->Op()->GetAttr(attr_name)));
135 136 137 138 139 140 141 142 143
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

144 145
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
146 147
void AddFeedOpAndVar(const GraphNodeSet& feed_vars,
                     const GraphNodeSet& cluster,
148
                     const GraphNodeMap& old_op2new_op,
149 150
                     const GraphNodeMap& old_var2new_var,
                     Graph* graph) {
151 152 153 154 155 156 157
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

158 159
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
160
    VLOG(4) << "Add Feed Op before: " << var->Name();
161 162

    // link feed op and feed var
163
    IR_NODE_LINK_TO(op, var);
164 165 166 167

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
168
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
169 170
      }
      // Do not need relink old op or old var here, they will be
171
      // fixed in RemoveSubGraphFromGraph, here we just deal with
172 173 174 175 176 177 178 179
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
180 181
void AddParamVar(const GraphNodeSet& param_vars,
                 const GraphNodeSet& cluster,
182
                 const GraphNodeMap& old_op2new_op,
183 184
                 const GraphNodeMap& old_var2new_var,
                 Graph* graph) {
185
  for (auto* old_var : param_vars) {
186
    auto* var = old_var2new_var.at(old_var);
187
    VLOG(4) << "Add Param Var Node: " << var->Name();
188 189 190

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
191
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
192 193 194 195 196 197 198
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
199 200
void AddOutputVar(const GraphNodeSet& output_vars,
                  const GraphNodeSet& cluster,
201
                  const GraphNodeMap& old_op2new_op,
202 203
                  const GraphNodeMap& old_var2new_var,
                  Graph* graph) {
204
  for (auto* old_var : output_vars) {
205 206 207 208 209 210
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

211
    auto* var = old_var2new_var.at(old_var);
212
    VLOG(4) << "Add Output Var Node: " << var->Name();
213

214 215 216
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

217 218
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
219
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
220 221 222 223 224
      }
    }
  }
}

225 226 227 228 229
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
230 231 232 233 234 235
    const auto* op = OpInfoMap::Instance().GetNullable(op_node->Name());
    // If op not registered in Paddle, skip
    if (!op) {
      continue;
    }
    auto& inferer = op->NoNeedBufferVarsInferer();
236 237 238 239 240
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
241 242 243
        op_desc,
        platform::errors::PreconditionNotMet(
            "The op desc of node in cluster shouldn't be null."));
244 245 246
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
247 248
    std::for_each(inferred_params.begin(),
                  inferred_params.end(),
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
298 299
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
300 301
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
302 303
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
304 305
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
306
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
307

308
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
309
  for (auto* op : cluster) {
310
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
311 312 313
    old_op2new_op[op] = sub_node;
  }

314
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
315
  for (auto* var : cluster_internals) {
316 317 318 319 320 321 322 323 324 325 326 327 328
    if (!var->Var()) {
      // skip control var

      // TODO(jiangcheng05): CINN not support control var now, so here we skip
      // it, but it may incur result incorrect problem. In detail, for two
      // unconnected ops, with control var, an op must run before another op.
      // If we remove the control var, the program wouldn't guarantee the run
      // ordering, in other words, the result may incorrect.
      VLOG(4)
          << "The internal var [" << var->Name() << "]'s vardesc empty,"
          << " it may be a control var, but CINN not support control var now.";
      continue;
    }
329
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
330 331
    old_var2new_var[var] = sub_node;
  }
332 333 334 335 336 337 338 339 340 341 342 343
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
344

345
  GraphNodeSet need_feed_vars;
346
  std::unordered_set<Node*> param_vars, output_vars;
J
jiangcheng 已提交
347 348 349 350 351
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
352 353 354 355
      if (!var->Var()) {
        // skip control var
        continue;
      }
356 357 358 359
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
360
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
361 362 363 364 365 366 367 368 369 370 371
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
372 373 374
      }
    }
    for (auto* var : op->outputs) {
375 376 377 378
      if (!var->Var()) {
        // skip control var
        continue;
      }
J
jiangcheng 已提交
379
      if (cluster_internals.count(var)) {
380
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
381
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
382 383 384 385
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
386 387 388 389
      }
    }
  }

390 391 392 393 394 395
  AddFeedOpAndVar(
      need_feed_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
  AddParamVar(
      param_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
  AddOutputVar(
      output_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
396 397
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
398 399 400 401 402 403 404 405 406 407 408 409
  auto collect_names_fn =
      [](const GraphNodeSet& nodes,
         const std::unordered_set<std::string>& ignore_names) {
        auto result = std::make_unique<std::vector<std::string>>();
        for (auto* node : nodes) {
          if (!node->Var() || ignore_names.count(node->Name())) {
            continue;
          }
          result->emplace_back(node->Name());
        }
        return result;
      };
410 411 412 413 414 415 416
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
417 418
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
419 420 421
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
422 423
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
424 425
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
426
  subgraph->GetOrInit<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
427
  return subgraph;
J
jiangcheng 已提交
428 429 430 431
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
432 433 434
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
435
// out-graph should not using this node at all.
436 437
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
438 439 440
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
441 442
    GraphNodeSet* cluster_inputs,
    GraphNodeSet* cluster_outputs,
443
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
444 445
  // collecting all input and output of op
  for (auto* op_node : cluster) {
446
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
447
    for (auto* input_var_node : op_node->inputs) {
448 449 450 451
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
452 453
    }
    for (auto* output_var_node : op_node->outputs) {
454 455 456
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

484
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
485 486
                     const GraphNodeSet& cluster_outputs,
                     Node* cinn_op_node) {
487 488 489 490 491 492 493 494 495 496 497 498 499 500
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
501
                      int64_t compilation_key,
502 503
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
504 505 506
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
507

508 509
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
510
  const auto& no_need_buffer_feeds =
511 512
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

513 514 515 516 517 518 519
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
520
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
521 522 523 524
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
525
  // Add new links from or to the cinn launch op node
526
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
527 528

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
529 530 531 532 533 534
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
535 536 537 538 539 540
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
541 542
}

543
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
544 545
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
546
// Meanwhile, move all links of cluster to the cinn op.
547
void ReplaceSubGraphWithCinnOpNode(
548 549 550 551
    const GraphNodeSet& cluster,
    const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs,
    const GraphNodeSet& cluster_internals,
552
    int64_t compilation_key,
553 554
    const std::unordered_set<std::string>& deny_var_set,
    Graph* graph) {
555
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
556 557 558 559 560 561
  AddCinnOpToGraph(cluster,
                   cluster_inputs,
                   cluster_outputs,
                   compilation_key,
                   deny_var_set,
                   graph);
562
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
563 564 565
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

S
sneaxiy 已提交
566 567 568 569 570 571 572 573 574
static bool IsInplaceOp(const OpDesc& op_desc) {
  auto inputs = op_desc.InputArgumentNames();
  std::unordered_set<std::string> input_set(inputs.begin(), inputs.end());
  for (auto& name : op_desc.OutputArgumentNames()) {
    if (input_set.count(name) > 0) return true;
  }
  return false;
}

J
jiangcheng 已提交
575 576 577 578
// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
579
void SearchAllSubgraphs(Graph* graph) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
S
sneaxiy 已提交
595

596 597
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
S
sneaxiy 已提交
598
    return registered && (node->IsOp() && !IsInplaceOp(*node->Op()));
J
jiangcheng 已提交
599
  };
600 601
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
602 603 604
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

605 606 607 608 609 610 611 612 613 614
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

615
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
616
  for (const auto& node_vec : clusters) {
617
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
618 619
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

620 621
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
622
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
623 624 625 626 627
    AnalyseClusterVariables(cluster_set,
                            deny_var_set,
                            &cluster_inputs,
                            &cluster_outputs,
                            &cluster_internals);
628 629 630 631 632 633 634

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

635 636
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
637
    auto compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
638
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
639 640
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
641

642
    // Replace the found cluster to a new cinn op node
643 644 645 646 647 648 649
    ReplaceSubGraphWithCinnOpNode(cluster_set,
                                  cluster_inputs,
                                  cluster_outputs,
                                  cluster_internals,
                                  compilation_key,
                                  deny_var_set,
                                  graph);
J
jiangcheng 已提交
650 651
  }
}
652
}  // namespace
J
jiangcheng 已提交
653

654
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
655 656 657 658 659 660

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);