test_softmax_op.py 12.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23
import paddle
24
import paddle.nn.functional as F
25 26

np.random.seed(10)
Q
qijun 已提交
27 28 29 30


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
31 32 33
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
34 35 36 37
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


38 39 40 41 42 43 44 45 46
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
47
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
48 49 50
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
51 52 53
    def get_axis(self):
        return -1

Q
qijun 已提交
54
    def setUp(self):
Q
fix bug  
qijun 已提交
55
        self.op_type = "softmax"
56
        self.use_cudnn = False
K
Kexin Zhao 已提交
57
        self.use_mkldnn = False
58 59
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
60
        self.init_kernel_type()
F
fengjiayi 已提交
61
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
62
        self.axis = self.get_axis()
F
fengjiayi 已提交
63

64
        np.random.seed(0)
F
fengjiayi 已提交
65
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
66
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
67 68 69

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
70
        self.attrs = {
D
dengkaipeng 已提交
71
            'axis': self.axis,
72
            'use_cudnn': self.use_cudnn,
73
            'use_mkldnn': self.use_mkldnn
74
        }
75

K
Kexin Zhao 已提交
76
    def init_kernel_type(self):
77
        pass
Q
qijun 已提交
78

Q
qijun 已提交
79
    def test_check_output(self):
80
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
81 82
        if self.use_cudnn:
            place = core.CUDAPlace(0)
83 84
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
85
        else:
86
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Q
qijun 已提交
87

Q
qijun 已提交
88
    def test_check_grad(self):
89
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
90
        if self.use_cudnn or self.dtype == np.float16:
91
            place = core.CUDAPlace(0)
C
chengduo 已提交
92 93
            if core.is_float16_supported(place):
                self.check_grad_with_place(
94 95 96 97
                    place, ["X"],
                    "Out",
                    max_relative_error=0.01,
                    check_dygraph=(self.use_mkldnn == False))
98
        else:
99 100 101 102 103
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
                check_dygraph=(self.use_mkldnn == False))
104 105


F
fengjiayi 已提交
106 107 108 109 110
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


135
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
136 137 138 139 140 141 142
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


143 144
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
145
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
146 147 148 149
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
150 151 152 153 154 155 156
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


G
GaoWei8 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


D
dengkaipeng 已提交
177 178
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
179
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
180 181 182
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
183 184 185 186 187 188 189 190 191 192
    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
193
    def get_axis(self):
194
        return 3
D
dengkaipeng 已提交
195 196


G
GaoWei8 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


254 255
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
256 257 258 259 260 261 262 263 264 265
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
266 267 268 269
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

270

Z
zhupengyang 已提交
271 272 273
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
274
    def get_x_shape(self):
Z
zhupengyang 已提交
275
        return [2, 3, 4, 10]
276

F
fengjiayi 已提交
277

278 279
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
280 281
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
282
        self.use_cudnn = True
K
Kexin Zhao 已提交
283 284 285 286 287 288 289
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
290 291


F
fengjiayi 已提交
292 293 294 295 296 297 298
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxBF16Op(OpTest):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = self.init_cudnn()
        self.use_mkldnn = False
        self.dtype = np.uint16
        self.shape = [10, 10]
        self.axis = -1

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(np.float32)
        out = np.apply_along_axis(stable_softmax, self.axis, x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
        self.attrs = {
            'axis': self.axis,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn
        }

    def init_cudnn(self):
        return False

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(
            place, check_dygraph=(self.use_mkldnn == False))

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(
            place, ["X"],
            "Out",
            numeric_grad_delta=0.05,
            check_dygraph=(self.use_mkldnn == False))


@unittest.skipIf(
    not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
    "core is not compiled with CUDA and cudnn version need larger than 8.1.0")
class TestSoftmaxBF16CUDNNOp(TestSoftmaxBF16Op):
    def init_cudnn(self):
        return True


349
class TestSoftmaxAPI(unittest.TestCase):
350 351 352 353 354
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
355 356 357 358
        self.executed_api()

    def executed_api(self):
        self.softmax = F.softmax
359

360 361
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
362
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
363
            out1 = self.softmax(x)
364 365
            m = paddle.nn.Softmax()
            out2 = m(x)
366
            exe = paddle.static.Executor(self.place)
367 368 369 370
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)
371

372
    def test_dygraph_check(self):
373
        paddle.disable_static(self.place)
374

375
        x = paddle.to_tensor(self.x_np)
376 377
        out1 = self.softmax(x)
        x = paddle.to_tensor(self.x_np)
378 379 380 381 382 383
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

384 385
        out1 = self.softmax(x, axis=0)
        x = paddle.to_tensor(self.x_np)
386 387 388 389 390 391
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

392 393 394 395 396 397 398
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        if core.is_compiled_with_rocm():
            out = self.softmax(x, dtype=np.float32)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float32)
        else:
            out = self.softmax(x, dtype=np.float64)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
399
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
400

401
        paddle.enable_static()
402 403

    def test_error(self):
404 405
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
406
            self.assertRaises(TypeError, self.softmax, 1)
407
            # The input dtype must be float16, float32, float64.
Z
zhupengyang 已提交
408 409
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32')
410
            self.assertRaises(TypeError, self.softmax, x_int32)
411
            # support the input dtype is float16
Z
zhupengyang 已提交
412 413
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16')
414 415 416 417 418 419
            self.softmax(x_fp16)


class TestSoftmaxInplaceAPI(TestSoftmaxAPI):
    def executed_api(self):
        self.softmax = F.softmax_
420 421


C
caoying03 已提交
422
if __name__ == "__main__":
Q
qijun 已提交
423
    unittest.main()