test_softmax_op.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
Q
qijun 已提交
19
from op_test import OpTest
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23
import paddle
24
import paddle.nn.functional as F
25 26

np.random.seed(10)
Q
qijun 已提交
27 28 29 30


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
31 32 33
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
34 35 36 37
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


38 39 40 41 42 43 44 45 46
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
47
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
48 49 50
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
51 52 53
    def get_axis(self):
        return -1

Q
qijun 已提交
54
    def setUp(self):
Q
fix bug  
qijun 已提交
55
        self.op_type = "softmax"
56
        self.use_cudnn = False
K
Kexin Zhao 已提交
57
        self.use_mkldnn = False
58
        self.dtype = np.float64
K
Kexin Zhao 已提交
59
        self.init_kernel_type()
F
fengjiayi 已提交
60
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
61
        self.axis = self.get_axis()
F
fengjiayi 已提交
62

63
        np.random.seed(0)
F
fengjiayi 已提交
64
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
65
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
66 67 68

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
69
        self.attrs = {
D
dengkaipeng 已提交
70
            'axis': self.axis,
71
            'use_cudnn': self.use_cudnn,
72
            'use_mkldnn': self.use_mkldnn
73
        }
74

K
Kexin Zhao 已提交
75
    def init_kernel_type(self):
76
        pass
Q
qijun 已提交
77

Q
qijun 已提交
78
    def test_check_output(self):
79
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
80 81
        if self.use_cudnn:
            place = core.CUDAPlace(0)
82 83
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
84
        else:
85
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Q
qijun 已提交
86

Q
qijun 已提交
87
    def test_check_grad(self):
88
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
89
        if self.use_cudnn or self.dtype == np.float16:
90
            place = core.CUDAPlace(0)
C
chengduo 已提交
91 92
            if core.is_float16_supported(place):
                self.check_grad_with_place(
93 94 95 96
                    place, ["X"],
                    "Out",
                    max_relative_error=0.01,
                    check_dygraph=(self.use_mkldnn == False))
97
        else:
98 99 100 101 102
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
                check_dygraph=(self.use_mkldnn == False))
103 104


F
fengjiayi 已提交
105 106 107 108 109
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


134
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
135 136 137 138 139 140 141
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


142 143
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
144
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
145 146 147 148
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
149 150 151 152 153 154 155
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


G
GaoWei8 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


D
dengkaipeng 已提交
176 177
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
178
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
179 180 181
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
182 183 184 185 186 187 188 189 190 191
    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
192
    def get_axis(self):
193
        return 3
D
dengkaipeng 已提交
194 195


G
GaoWei8 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


253 254
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
255 256 257 258 259 260 261 262 263 264
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
265 266 267 268
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

269

Z
zhupengyang 已提交
270 271 272
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
273
    def get_x_shape(self):
Z
zhupengyang 已提交
274
        return [2, 3, 4, 10]
275

F
fengjiayi 已提交
276

277 278
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
279 280
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
281
        self.use_cudnn = True
K
Kexin Zhao 已提交
282 283 284 285 286 287 288
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
289 290


F
fengjiayi 已提交
291 292 293 294 295 296 297
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


298
class TestSoftmaxAPI(unittest.TestCase):
299 300 301 302 303 304
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)

305 306
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
307
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
308 309 310
            out1 = F.softmax(x)
            m = paddle.nn.Softmax()
            out2 = m(x)
311
            exe = paddle.static.Executor(self.place)
312 313 314 315
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)
316

317
    def test_dygraph_check(self):
318
        paddle.disable_static(self.place)
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        x = paddle.to_tensor(self.x_np)
        out1 = F.softmax(x)
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.softmax(x, axis=0)
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out = F.softmax(x, dtype=np.float64)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
337
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
338

339
        paddle.enable_static()
340 341

    def test_error(self):
342 343 344 345
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softmax, 1)
            # The input dtype must be float16, float32, float64.
Z
zhupengyang 已提交
346 347
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32')
348 349
            self.assertRaises(TypeError, F.softmax, x_int32)
            # support the input dtype is float16
Z
zhupengyang 已提交
350 351
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16')
352
            F.softmax(x_fp16)
353 354


C
caoying03 已提交
355
if __name__ == "__main__":
Q
qijun 已提交
356
    unittest.main()