test_softmax_op.py 8.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
Q
qijun 已提交
19
from op_test import OpTest
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23 24 25
import paddle

np.random.seed(10)
Q
qijun 已提交
26 27 28 29


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
30 31 32
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
33 34 35 36
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


Q
qijun 已提交
37
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
38 39 40
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
41 42 43
    def get_axis(self):
        return -1

Q
qijun 已提交
44
    def setUp(self):
Q
fix bug  
qijun 已提交
45
        self.op_type = "softmax"
46
        self.use_cudnn = False
K
Kexin Zhao 已提交
47
        self.use_mkldnn = False
48
        self.dtype = np.float64
K
Kexin Zhao 已提交
49
        self.init_kernel_type()
F
fengjiayi 已提交
50
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
51
        self.axis = self.get_axis()
F
fengjiayi 已提交
52

53
        np.random.seed(0)
F
fengjiayi 已提交
54
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
55
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
56 57 58

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
59
        self.attrs = {
D
dengkaipeng 已提交
60
            'axis': self.axis,
61
            'use_cudnn': self.use_cudnn,
62
            'use_mkldnn': self.use_mkldnn
63
        }
64

K
Kexin Zhao 已提交
65
    def init_kernel_type(self):
66
        pass
Q
qijun 已提交
67

Q
qijun 已提交
68
    def test_check_output(self):
69
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
70 71
        if self.use_cudnn:
            place = core.CUDAPlace(0)
72 73
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
74
        else:
75
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Q
qijun 已提交
76

Q
qijun 已提交
77
    def test_check_grad(self):
78
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
79
        if self.use_cudnn or self.dtype == np.float16:
80
            place = core.CUDAPlace(0)
C
chengduo 已提交
81 82
            if core.is_float16_supported(place):
                self.check_grad_with_place(
83 84 85 86
                    place, ["X"],
                    "Out",
                    max_relative_error=0.01,
                    check_dygraph=(self.use_mkldnn == False))
87
        else:
88 89 90 91 92
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
                check_dygraph=(self.use_mkldnn == False))
93 94


95
class TestSoftmaxOpError(unittest.TestCase):
96 97 98 99 100 101
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of softmax_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.softmax, x1)
102
            # The input dtype of softmax_op must be float16, float32 or float64.
103 104
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.softmax, x2)
105 106
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16")
            fluid.layers.softmax(x3)
107 108


F
fengjiayi 已提交
109 110 111 112 113
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


138
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
139 140 141 142 143 144 145
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


146 147
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
148
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
149 150 151 152
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
153 154 155 156 157 158 159
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
160 161
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
162
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
163 164 165 166
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
167
        return 3
D
dengkaipeng 已提交
168 169


170 171
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
172 173 174 175 176 177 178 179 180 181
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
182 183 184 185
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

186

187
@unittest.skip('disable TestSoftmaxFP16Op2')
C
chengduo 已提交
188 189 190 191 192 193 194 195 196 197
class TestSoftmaxFP16Op2(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

F
fengjiayi 已提交
198 199 200
    def get_x_shape(self):
        return [2, 3, 4, 5]

201 202 203
    def test_check_grad(self):
        pass

F
fengjiayi 已提交
204

205 206
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
207 208
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
209
        self.use_cudnn = True
K
Kexin Zhao 已提交
210 211 212 213 214 215 216
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
217 218


F
fengjiayi 已提交
219 220 221 222 223 224 225
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
class TestNnFunctionalSoftmaxApi(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)

    def test_api_static(self):
        train_program = Program()
        startup_program = Program()
        with program_guard(train_program, startup_program):
            x = paddle.data('X', self.x_np.shape, 'float32')
            out = paddle.nn.functional.softmax(x)

        exe = paddle.Executor(self.place)
        res = exe.run(train_program, feed={'X': self.x_np}, fetch_list=[out])

        assert np.allclose(self.out_ref, res[0])

    def test_api_imperative(self):
        with paddle.imperative.guard(self.place):
            x = paddle.imperative.to_variable(self.x_np)
            out = paddle.nn.functional.softmax(x)
            assert np.allclose(self.out_ref, out.numpy())

            out = paddle.nn.functional.softmax(x, axis=0)
            out_ref = np.apply_along_axis(stable_softmax, 0, self.x_np)
            assert np.allclose(out_ref, out.numpy())

    def test_error(self):
        with program_guard(Program(), Program()):
            # The x should be variable and its dtype should be float32, float64.
            self.assertRaises(TypeError, paddle.nn.functional.softmax, [1])

            x = paddle.data(name='x', shape=[2, 3], dtype='int32')
            self.assertRaises(TypeError, paddle.nn.functional.softmax, x)


C
caoying03 已提交
264
if __name__ == "__main__":
Q
qijun 已提交
265
    unittest.main()