parallel.py 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import os
16
import six
Y
Yan Xu 已提交
17
import numpy as np
18
import warnings
19
from collections import OrderedDict
20 21 22 23 24 25 26

from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
27
import warnings
28
import paddle
29

30
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
31 32 33 34

ParallelStrategy = core.ParallelStrategy


35
@deprecated(since="2.0.0", update_to="paddle.distributed.init_parallel_env")
C
chengduo 已提交
36
def prepare_context(strategy=None):
37 38 39
    '''
    :api_attr: imperative
    '''
C
chengduo 已提交
40 41 42 43 44 45 46 47
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
48
    assert framework.in_dygraph_mode() is True, \
49
        "dygraph.prepare_context should be used with dygraph mode."
50
    place = framework._current_expected_place()
C
chengduo 已提交
51
    assert place is not None, \
52
        "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard."
53 54 55 56 57 58 59 60
    if not parallel_helper._is_parallel_ctx_initialized():
        if isinstance(place, core.CUDAPlace):
            parallel_helper._set_parallel_ctx(
                core.NCCLParallelContext(strategy, place))
        else:
            # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
            assert ("Only support CUDAPlace for now.")
        parallel_helper._init_parallel_ctx()
C
chengduo 已提交
61
    return strategy
62 63


64 65
class ParallelEnv(object):
    """
66 67 68 69
    .. note::
        This API is not recommended, if you need to get rank and world_size, 
        it is recommended to use ``paddle.distributed.get_rank()`` and 
        ``paddle.distributed.get_world_size()`` .
70 71

    This class is used to obtain the environment variables required for 
72
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
73

74
    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
75
    or ``paddle.distributed.spawn`` .
76 77 78 79

    Examples:
      .. code-block:: python

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
104 105
    """

106
    def __init__(self):
107 108
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
109 110 111 112 113

        # imperative only support one gpu
        selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
        self._device_id = int(selected_gpus[0])

114 115 116
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
117 118 119 120 121
        self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1"))
        assert self._nrings > 0, \
            "nccl_nrings must be an integer greater than 0."
        assert self._nrings < 9, \
            "nccl_nrings should be less than 9, which is enough in most scenarios."
122 123

    @property
124
    def rank(self):
125
        """
126
        Rank of current trainer.
127

128
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.
129 130 131 132

        Examples:
          .. code-block:: python

133 134
            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist
135
            
136 137 138
            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
139
        """
140
        return self._rank
141 142

    @property
143
    def world_size(self):
144
        """
145
        The number of trainers (number of processes participating in current job).
146

147
        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.
148 149 150 151

        Examples:
          .. code-block:: python

152 153
            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist
154
            
155 156 157
            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
158
        """
159
        return self._world_size
160 161

    @property
162
    def device_id(self):
163 164 165
        """
        The ID of selected GPU card for parallel training.

166
        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.
167 168 169 170 171

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
172
            import paddle.distributed as dist
173
            
174 175
            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
176 177
            # The device id are 1
        """
178
        return self._device_id
179 180 181

    @property
    def current_endpoint(self):
182 183 184
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

185
        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".
186 187 188 189 190

        Examples:
          .. code-block:: python
            
            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
191
            import paddle.distributed as dist
192
            
193
            env = dist.ParallelEnv()
194 195 196
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
197
        return self._current_endpoint
198 199 200

    @property
    def trainer_endpoints(self):
201 202 203 204
        """
        The endpoints of all trainer nodes in the task, 
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

205
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".
206 207 208 209 210

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
211
            import paddle.distributed as dist
212
            
213
            env = dist.ParallelEnv()
214 215 216
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
217 218
        return self._trainer_endpoints

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    @property
    def nrings(self):
        """
        Nrings of current trainer.

        Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_nccl_nrings=1
            import paddle.distributed as dist
            
            env = dist.ParallelEnv()
            print("The nrings is %d" % env.nrings)
            # the number of ring is 1
        """
        return self._nrings

238 239 240 241 242
    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id

243

244 245 246 247 248 249
# NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names
# are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible
# with the old examples, here still need to keep this name.
Env = ParallelEnv


250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
def _build_default_parallel_strategy():
    strategy = ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
    return strategy


def _coalesce_tensors(var_groups):
    from ..layers import nn
    coalesced_grads_and_grad_vars = []
    for group_id, grad_vars in var_groups.items():
        flattened_vars = []
        g_var_shapes = []
        for g_var in grad_vars:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                nn.reshape(
                    x=g_var, shape=[np.prod(g_var.shape)]))
        coalesced_grad = nn.concat(flattened_vars)
        coalesced_grads_and_grad_vars.append(
            [coalesced_grad, grad_vars, g_var_shapes])
    return coalesced_grads_and_grad_vars


@framework.dygraph_only
def _reshape_inplace(x, shape):
    x_shape = framework._varbase_creator(dtype=x.dtype)
    framework._dygraph_tracer().trace_op(
        type="reshape2",
        inputs={'X': x},
        outputs={'Out': x,
                 'XShape': x_shape},
        attrs={'shape': shape})


@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
    for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
        grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
        framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_grad},
            outputs={'Out': origin_grad_vars},
            attrs={'sections': grad_var_len,
                   'axis': 0})
        for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
            _reshape_inplace(x=g_var, shape=g_shape)
            assert g_var.shape == g_shape


def scale_loss(loss):
    if not ParallelEnv().world_size > 1:
        return loss

    loss_scale = to_variable(
        np.array([ParallelEnv().world_size]).astype("float32"))
    loss_scale.stop_gradient = True
    scaled_loss = loss / loss_scale
    return scaled_loss


313
class DataParallel(layers.Layer):
C
chengduo 已提交
314
    """
315
    Run the dygraph module with data parallelism.
C
chengduo 已提交
316

317
    Currently, DataParallel class only supports to run the dynamic graph
318 319 320 321 322 323 324 325 326 327
    with multi-process. 
    
    Now supports two ways to start training:

    1. start by ``paddle.distributed.spawn`` method, for example:

        ``python demo.py`` (spawn need to be called in ``__main__`` method)
    
    2. start by ``paddle.distributed.launch`` module, for example:
    
328
        ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
329 330

    And the content of `demo.py` is the code of examples.
C
chengduo 已提交
331

332 333
    Args:
        layers(Layer): The module that should be executed by data parallel.
334 335
        strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism, 
            contains environment configuration related to parallel execution. Default: None.
336
        comm_buffer_size(int, optional):  It limits the memory size(MB) of one buffer  
337 338
                                          parameters' gradient which is the input of communication 
                                          calling(e.g NCCLAllReduce). Default: 25.
339 340
        last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
                                         calling. Making the last communication buffer size small is useful to 
341
                                         improve performance. Default: 1.
342
            
343 344 345
    Returns:
        Layer: The data paralleled module.

C
chengduo 已提交
346 347 348
    Examples:
        .. code-block:: python

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
364
                # 1. initialize parallel environment
365 366
                dist.init_parallel_env()

367
                # 2. create data parallel layer & optimizer
368 369 370 371 372 373 374
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

375
                # 3. run layer
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                # 1. start by ``paddle.distributed.spawn`` (default)
                dist.spawn(train, nprocs=2)
                # 2. start by ``paddle.distributed.launch``
                # train()
C
chengduo 已提交
391 392
    """

393 394 395
    def __init__(self,
                 layers,
                 strategy=None,
396 397
                 comm_buffer_size=25,
                 last_comm_buffer_size=1):
398 399
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
C
chengduo 已提交
400

401
        self._layers = layers
402 403 404 405 406 407 408 409

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy. 
        # It just stores some environment variables, which can be constructed by 
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
410
            self._strategy = _build_default_parallel_strategy()
411

412
        if self._strategy.nranks > 1:
413
            self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
414 415 416 417
            # NOTE(shenliang03): We can set environment variables to control 
            # the size of the group, Default: 1MB. The role of this small group is: 
            # when the last group allreduce, the overlap cannot work. Making the 
            # the last group small is useful to improve performance.
418 419
            self.last_comm_buffer_size = int(last_comm_buffer_size * 1024 *
                                             1024)
420 421
            self.init_reducer()
        else:
422 423
            warnings.warn("The program will return to single-card operation. "
                          "Please check 1, whether you use spawn or fleetrun "
424 425
                          "to start the program. 2, Whether it is a multi-card "
                          "program. 3, Is the current environment multi-card.")
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    def init_reducer(self):
        layers_param = []
        params_set = set()
        for sublayer in self.sublayers():
            for _, param in sublayer.named_parameters(include_sublayers=False):
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                if not isinstance(param, core.VarBase):
                    raise TypeError("The data type of '%s' must be Varbase" %
                                    param.name)
                if param.trainable:
                    layers_param.append((sublayer, param))

        trainable_parameters = [param for _, param in layers_param]

        # NOTE(shenliang03): Here we can only use the attributes to judge whether
        # parameter is sparse(or SelectedRows). The reason is that the sparse message
        # can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
446
        # we should add the layer here like "paddle.nn.layer.common.Embedding".
447
        def check_layer_sparse(sublayer):
448 449 450
            if isinstance(sublayer, paddle.nn.layer.common.Embedding):
                return sublayer._sparse
            # NOTE(shenliang03):This is for compatibility. If paddle.fluid.dygraph.Embedding 
451
            # is removed in the future, the check will also be removed here.
452
            if isinstance(sublayer, paddle.fluid.dygraph.Embedding):
453 454 455 456 457 458 459 460 461
                return sublayer._is_sparse
            return False

        is_sparse_gradient = [
            check_layer_sparse(sublayer) for sublayer, _ in layers_param
        ]

        self.group_indices = core.assign_group_by_size(
            trainable_parameters, is_sparse_gradient,
462
            [self.last_comm_buffer_size, self.comm_buffer_size])
463 464 465 466 467

        assert parallel_helper.__parallel_ctx__clz__ is not None, \
            "ParallelContext must be initialized before. You should use init_parallel_env() before" \
            "constructing the DataParallel."

468 469 470 471 472
        self._reducer = core.Reducer(
            trainable_parameters,
            list(reversed(self.group_indices)), is_sparse_gradient,
            parallel_helper.__parallel_ctx__clz__,
            [self.last_comm_buffer_size, self.comm_buffer_size])
473

474
    def forward(self, *inputs, **kwargs):
475 476 477
        if self._strategy.nranks > 1:
            self._reducer.prepare_for_backward()

Y
Yan Xu 已提交
478 479
        return self._layers(*inputs, **kwargs)

480 481
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
482
    def scale_loss(self, loss):
C
chengduo 已提交
483
        """
484 485
        Deprecated method, now ``scale_loss`` is an empty method,  
        keep this method just for compatibility.
C
chengduo 已提交
486
        """
Y
Yan Xu 已提交
487 488
        return loss

489 490
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
491
    def apply_collective_grads(self):
C
chengduo 已提交
492
        """
493 494
        Deprecated method, now ``apply_collective_grads`` is an empty method, 
        keep this method just for compatibility.
C
chengduo 已提交
495
        """
496
        return
497 498 499 500 501 502

    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
        '''
503
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
504 505

        Parameters:
506 507
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
508 509

        Retruns:
510
            dict: a dict contains all the parameters and persistable buffers.
511 512 513 514

        Examples:
            .. code-block:: python

515 516 517 518 519 520 521
                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = fluid.dygraph.Embedding([10, 10])
                emb = fluid.dygraph.DataParallel(emb)
522

523 524
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")
525 526 527 528 529 530 531 532

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix)

533 534 535 536 537
    @framework.deprecate_stat_dict
    def set_state_dict(self,
                       state_dict,
                       include_sublayers=True,
                       use_structured_name=True):
538
        '''
539
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
540 541

        Parameters:
542 543 544
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
545 546 547 548 549 550 551
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

552 553
                import paddle
                import paddle.distributed as dist
554

555
                dist.init_parallel_env()
556

557
                emb = paddle.nn.Embedding(10, 10)
558
                emb = fluid.dygraph.DataParallel(emb)
559

560
                state_dict = emb.state_dict()
561
                paddle.save(state_dict, "paddle_dy.pdparams")
562

563
                para_state_dict = paddle.load("paddle_dy.pdparams")
564
                emb.set_state_dict(para_state_dict)
565 566 567

        '''

568 569
        self._layers.set_state_dict(
            state_dict,
570 571
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)
572 573 574 575

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict