parallel.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import six
Y
Yan Xu 已提交
16
import numpy as np
17

18
from .. import core
19 20 21 22
from . import layers
from .. import framework

from ..layers import collective
Y
Yan Xu 已提交
23
from . import to_variable
24 25 26 27 28 29 30 31

__all__ = ["prepare_context"]

ParallelStrategy = core.ParallelStrategy

__parallel_ctx__clz__ = None


32
def prepare_context(parallel_strategy):
33 34
    global __parallel_ctx__clz__
    assert __parallel_ctx__clz__ is None, "ParallelContext can only be initialized once."
35 36 37 38
    assert framework.in_dygraph_mode(
    ) is True, "dygraph.parallel.prepare_context should be used with dygrahp mode."
    place = framework._current_expected_place()
    assert place is not None, "dygraph.parallel.prepare_context should be used in fluid.dygraph.guard(place) guard."
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    if isinstance(place, core.CUDAPlace):
        __parallel_ctx__clz__ = core.NCCLParallelContext(parallel_strategy,
                                                         place)
    else:
        # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
        assert ("Only support CUDAPlace for now.")
    __parallel_ctx__clz__.init()


class Env(object):
    def __init__(self):
        self._nranks = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        self._local_rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._dev_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")

    @property
    def nranks(self):
        return self._nranks

    @property
    def local_rank(self):
        return self._local_rank

    @property
    def dev_id(self):
        return self._dev_id

    @property
    def current_endpoint(self):
        return self._current_endpoint
73 74 75 76 77 78 79

    @property
    def trainer_endpoints(self):
        return self._trainer_endpoints


class DataParallel(layers.Layer):
Y
Yan Xu 已提交
80
    def __init__(self, layers, strategy):
81 82 83
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
        self._layers = layers
Y
Yan Xu 已提交
84
        self._strategy = strategy
85 86

    def forward(self, *inputs, **kwargs):
Y
Yan Xu 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        return self._layers(*inputs, **kwargs)

    def scale_loss(self, loss):
        if self._strategy.nranks < 2:
            return loss
        loss_scale = to_variable(
            np.array([self._strategy.nranks]).astype("float32"))
        loss_scale.stop_gradient = True
        loss = loss / loss_scale
        return loss

    def apply_collective_grads(self):
        if self._strategy.nranks < 2:
            return

        for param in self._layers.parameters():
            if param.trainable and param._ivar._grad_ivar():
                g_var = framework.Variable(
                    block=self._helper.main_program.current_block(),
                    name=param._ivar._grad_name(),
                    stop_gradient=True,
                    ivar=param._ivar._grad_ivar())
                collective._allreduce(g_var, g_var, sync_mode=True)