parallel.py 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import os
16
import six
Y
Yan Xu 已提交
17
import numpy as np
18
import warnings
19
from collections import OrderedDict
20 21 22 23 24 25 26

from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
27

28
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
29 30 31 32

ParallelStrategy = core.ParallelStrategy


33
@deprecated(since="2.0.0", update_to="paddle.distributed.init_parallel_env")
C
chengduo 已提交
34
def prepare_context(strategy=None):
35 36 37
    '''
    :api_attr: imperative
    '''
C
chengduo 已提交
38 39 40 41 42 43 44 45
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
46
    assert framework.in_dygraph_mode() is True, \
47
        "dygraph.prepare_context should be used with dygraph mode."
48
    place = framework._current_expected_place()
C
chengduo 已提交
49
    assert place is not None, \
50
        "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard."
51 52 53 54 55 56 57 58
    if not parallel_helper._is_parallel_ctx_initialized():
        if isinstance(place, core.CUDAPlace):
            parallel_helper._set_parallel_ctx(
                core.NCCLParallelContext(strategy, place))
        else:
            # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
            assert ("Only support CUDAPlace for now.")
        parallel_helper._init_parallel_ctx()
C
chengduo 已提交
59
    return strategy
60 61


62 63
class ParallelEnv(object):
    """
64 65 66 67
    .. note::
        This API is not recommended, if you need to get rank and world_size, 
        it is recommended to use ``paddle.distributed.get_rank()`` and 
        ``paddle.distributed.get_world_size()`` .
68 69

    This class is used to obtain the environment variables required for 
70
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.
71

72
    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
73
    or ``paddle.distributed.spawn`` .
74 75 76 77

    Examples:
      .. code-block:: python

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
102 103
    """

104
    def __init__(self):
105 106
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
107 108 109 110 111

        # imperative only support one gpu
        selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
        self._device_id = int(selected_gpus[0])

112 113 114 115 116
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")

    @property
117
    def rank(self):
118
        """
119
        Rank of current trainer.
120

121
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.
122 123 124 125

        Examples:
          .. code-block:: python

126 127
            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist
128
            
129 130 131
            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
132
        """
133
        return self._rank
134 135

    @property
136
    def world_size(self):
137
        """
138
        The number of trainers (number of processes participating in current job).
139

140
        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.
141 142 143 144

        Examples:
          .. code-block:: python

145 146
            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist
147
            
148 149 150
            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
151
        """
152
        return self._world_size
153 154

    @property
155
    def device_id(self):
156 157 158
        """
        The ID of selected GPU card for parallel training.

159
        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.
160 161 162 163 164

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
165
            import paddle.distributed as dist
166
            
167 168
            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
169 170
            # The device id are 1
        """
171
        return self._device_id
172 173 174

    @property
    def current_endpoint(self):
175 176 177
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

178
        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".
179 180 181 182 183

        Examples:
          .. code-block:: python
            
            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
184
            import paddle.distributed as dist
185
            
186
            env = dist.ParallelEnv()
187 188 189
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
190
        return self._current_endpoint
191 192 193

    @property
    def trainer_endpoints(self):
194 195 196 197
        """
        The endpoints of all trainer nodes in the task, 
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

198
        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".
199 200 201 202 203

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
204
            import paddle.distributed as dist
205
            
206
            env = dist.ParallelEnv()
207 208 209
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
210 211
        return self._trainer_endpoints

212 213 214 215 216
    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id

217

218 219 220 221 222 223
# NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names
# are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible
# with the old examples, here still need to keep this name.
Env = ParallelEnv


224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
def _build_default_parallel_strategy():
    strategy = ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint
    return strategy


def _coalesce_tensors(var_groups):
    from ..layers import nn
    coalesced_grads_and_grad_vars = []
    for group_id, grad_vars in var_groups.items():
        flattened_vars = []
        g_var_shapes = []
        for g_var in grad_vars:
            g_var_shapes.append(g_var.shape)
            flattened_vars.append(
                nn.reshape(
                    x=g_var, shape=[np.prod(g_var.shape)]))
        coalesced_grad = nn.concat(flattened_vars)
        coalesced_grads_and_grad_vars.append(
            [coalesced_grad, grad_vars, g_var_shapes])
    return coalesced_grads_and_grad_vars


@framework.dygraph_only
def _reshape_inplace(x, shape):
    x_shape = framework._varbase_creator(dtype=x.dtype)
    framework._dygraph_tracer().trace_op(
        type="reshape2",
        inputs={'X': x},
        outputs={'Out': x,
                 'XShape': x_shape},
        attrs={'shape': shape})


@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
    for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
        grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
        framework._dygraph_tracer().trace_op(
            type='split',
            inputs={'X': coalesced_grad},
            outputs={'Out': origin_grad_vars},
            attrs={'sections': grad_var_len,
                   'axis': 0})
        for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
            _reshape_inplace(x=g_var, shape=g_shape)
            assert g_var.shape == g_shape


def scale_loss(loss):
    if not ParallelEnv().world_size > 1:
        return loss

    loss_scale = to_variable(
        np.array([ParallelEnv().world_size]).astype("float32"))
    loss_scale.stop_gradient = True
    scaled_loss = loss / loss_scale
    return scaled_loss


@no_grad
def apply_collective_grads(parameters):
    if not ParallelEnv().world_size > 1:
        return

    grad_var_set = set()
    grad_vars = []
    sparse_grad_vars = []
    strategy = _build_default_parallel_strategy()
    for param in parameters:
        # NOTE(zcd): The grad_ivar maybe no generated.
        if param.trainable and (param._grad_ivar() is not None):
            g_var = param._grad_ivar()
            if g_var._is_sparse():
                sparse_grad_vars.append(g_var)
                continue
            grad_vars.append(g_var)
            assert g_var not in grad_var_set
            grad_var_set.add(g_var)

    if sparse_grad_vars:
        sparse_grad_vars.sort(key=lambda x: x.name)
        for grad_var in sparse_grad_vars:
            grad_var._allreduce(strategy)

    # FIXME(zcd): the type of the var should be LoDTensor, i.e
    # the gradients should be dense, otherwise, the following
    # logic should be updated.
    # 128 MB as a group
    mega_bytes = 128 * 1024 * 1024
    group_idx = 0
    memory_counter = 0
    grad_var_groups = OrderedDict()
    dtype = grad_vars[0].dtype
    for g_var in grad_vars:
        # NOTE: the dtype of the same group should be the same.
        bytes = np.prod(g_var.shape) * core.size_of_dtype(g_var.dtype)
        if memory_counter < mega_bytes and dtype == g_var.dtype:
            memory_counter += bytes
        else:
            memory_counter = bytes
            group_idx += 1
        grad_var_groups.setdefault(group_idx, []).append(g_var)

    coalesced_grads_and_vars = _coalesce_tensors(grad_var_groups)

    for coalesced_grad, _, _ in coalesced_grads_and_vars:
        coalesced_grad._allreduce(strategy)

    _split_tensors(coalesced_grads_and_vars)


339
class DataParallel(layers.Layer):
C
chengduo 已提交
340
    """
341
    Run the dygraph module with data parallelism.
C
chengduo 已提交
342

343
    Currently, DataParallel class only supports to run the dynamic graph
344 345 346 347 348 349 350 351 352 353
    with multi-process. 
    
    Now supports two ways to start training:

    1. start by ``paddle.distributed.spawn`` method, for example:

        ``python demo.py`` (spawn need to be called in ``__main__`` method)
    
    2. start by ``paddle.distributed.launch`` module, for example:
    
354
        ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
355 356

    And the content of `demo.py` is the code of examples.
C
chengduo 已提交
357

358 359
    Args:
        layers(Layer): The module that should be executed by data parallel.
360 361 362
        strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism, 
            contains environment configuration related to parallel execution. Default: None.
            
363 364 365
    Returns:
        Layer: The data paralleled module.

C
chengduo 已提交
366 367 368
    Examples:
        .. code-block:: python

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
384
                # 1. initialize parallel environment
385 386
                dist.init_parallel_env()

387
                # 2. create data parallel layer & optimizer
388 389 390 391 392 393 394
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

395
                # 3. run layer
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                # 1. start by ``paddle.distributed.spawn`` (default)
                dist.spawn(train, nprocs=2)
                # 2. start by ``paddle.distributed.launch``
                # train()
C
chengduo 已提交
411 412
    """

413
    def __init__(self, layers, strategy=None):
414 415
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
C
chengduo 已提交
416

417
        self._layers = layers
418 419 420 421 422 423 424 425

        # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy. 
        # It just stores some environment variables, which can be constructed by 
        # ParallelEnv. Here it is set as an optional argument.
        # This parameter is not removed because of compatibility with 1.x writing.
        if strategy is not None:
            self._strategy = strategy
        else:
426
            self._strategy = _build_default_parallel_strategy()
427 428

    def forward(self, *inputs, **kwargs):
Y
Yan Xu 已提交
429 430
        return self._layers(*inputs, **kwargs)

431 432
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
433
    def scale_loss(self, loss):
C
chengduo 已提交
434
        """
435 436
        Deprecated method, now ``scale_loss`` is an empty method,  
        keep this method just for compatibility.
C
chengduo 已提交
437
        """
Y
Yan Xu 已提交
438 439
        return loss

440 441
    @deprecated(
        since="2.0.0", reason="This method does not need to be called anymore.")
Y
Yan Xu 已提交
442
    def apply_collective_grads(self):
C
chengduo 已提交
443
        """
444 445
        Deprecated method, now ``apply_collective_grads`` is an empty method, 
        keep this method just for compatibility.
C
chengduo 已提交
446
        """
447
        return
448 449 450 451 452 453

    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
        '''
454
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
455 456

        Parameters:
457 458
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
459 460

        Retruns:
461
            dict: a dict contains all the parameters and persistable buffers.
462 463 464 465

        Examples:
            .. code-block:: python

466 467 468 469 470 471 472
                import paddle
                import paddle.distributed as dist

                dist.init_parallel_env()

                emb = fluid.dygraph.Embedding([10, 10])
                emb = fluid.dygraph.DataParallel(emb)
473

474 475
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy.pdparams")
476 477 478 479 480 481 482 483

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix)

484 485 486 487 488
    @framework.deprecate_stat_dict
    def set_state_dict(self,
                       state_dict,
                       include_sublayers=True,
                       use_structured_name=True):
489
        '''
490
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
491 492

        Parameters:
493 494 495
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
496 497 498 499 500 501 502
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

503 504
                import paddle
                import paddle.distributed as dist
505

506
                dist.init_parallel_env()
507

508
                emb = paddle.nn.Embedding(10, 10)
509
                emb = fluid.dygraph.DataParallel(emb)
510

511
                state_dict = emb.state_dict()
512
                paddle.save(state_dict, "paddle_dy.pdparams")
513

514
                para_state_dict = paddle.load("paddle_dy.pdparams")
515
                emb.set_state_dict(para_state_dict)
516 517 518

        '''

519 520
        self._layers.set_state_dict(
            state_dict,
521 522
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)
523 524 525 526

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict