reduce_op.h 31.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/data_type_transform.h"
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
26 27
#include "paddle/phi/kernels/funcs/math_function.h"
// only can include the headers in paddle/phi/api dirs
28
#include "paddle/fluid/framework/convert_utils.h"
29 30
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/kernels/cpu/reduce.h"
31

32
#if defined(__HIPCC__) || defined(__NVCC__) || defined(__xpu__)
33 34
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
35
#endif
G
guosheng 已提交
36 37 38 39

namespace paddle {
namespace operators {

40 41
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
42 43
    paddle::operators::ReduceFunctor<DeviceContext, OutT, NDIM, RDIM,     \
                                     Functor>(                            \
44 45
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
46 47
  }

48
using Tensor = framework::Tensor;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
using DDim = framework::DDim;

inline void GetShuffledDim(const DDim& src_dims, DDim* dst_dims,
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) = src_dims[reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = reduced_dims[i];
    src_dims_check[reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
                                            int dim_size, bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e, dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size, e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
95 96 97 98 99 100 101 102 103 104 105
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
                      const Tensor* input, Tensor* shuffled_input,
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

106
  phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  trans(context.template device_context<DeviceContext>(), *input,
        shuffled_input, perm_axis);
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
                    const Tensor* input, Tensor* output,
                    const std::vector<int>& dims, bool keep_dim) {
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
137
  paddle::operators::ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
138 139 140 141 142 143 144 145 146 147
      context.template device_context<DeviceContext>(), shuffled_input, output,
      {1}, keep_dim);
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
                        const framework::Tensor* dout, framework::Tensor* dx,
148
                        Functor functor, const std::vector<int>& dims) {
149 150 151 152 153 154 155 156 157 158 159 160 161
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
      context.template device_context<DeviceContext>(), shuffled_x, *out, *dout,
162
      dx, functor, {1});
163 164 165 166 167 168 169
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
170
  phi::funcs::TransposeNormal<DeviceContext, T> trans;
171 172 173
  trans(context.template device_context<DeviceContext>(), dx_tmp, dx,
        origin_axis);
}
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
230 231 232
    }
  }
};
Q
QI JUN 已提交
233
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
234
class ReduceKernel : public framework::OpKernel<T> {
235 236 237 238 239 240 241 242
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;
243
    auto* input = context.Input<Tensor>("X");
244

245
    if (out_dtype < 0) {
246 247
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(
          framework::TransToProtoVarType(input->dtype()));
248 249 250
    } else {
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
    }
251 252 253 254 255 256 257 258 259

    auto& dev_ctx = context.device_context<DeviceContext>();
    output->mutable_data(
        dev_ctx.GetPlace(),
        static_cast<framework::proto::VarType::Type>(cast_out_dtype));

    std::vector<int64_t> tmp_dims(dims.begin(), dims.end());

    // call new kernel
260 261 262
    phi::Reduce<typename framework::ConvertToPhiContext<DeviceContext>::TYPE, T,
                Functor>(
        static_cast<const typename framework::ConvertToPhiContext<
W
Wilber 已提交
263
            DeviceContext>::TYPE&>(dev_ctx),
264
        *input, reduce_all, tmp_dims, keep_dim,
265
        framework::TransToPhiDataType(cast_out_dtype), output);
266 267
  }
};
268

269 270 271 272 273
template <typename DeviceContext, typename T, typename Functor>
void LaunchReduceGradKernel(const framework::ExecutionContext& context,
                            const framework::Tensor* input0,
                            const framework::Tensor* input1,
                            const framework::Tensor* input2,
274
                            paddle::framework::Tensor* output, Functor functor,
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = EigenVector<T>::Flatten(*input0);
    auto x_reduce = EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
    auto x_grad = EigenVector<T>::Flatten(*output);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
    functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<DeviceContext, T, 1, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
294
            *input2, output, functor, dims);
295 296 297 298
        break;
      case 2:
        ReduceGradFunctor<DeviceContext, T, 2, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
299
            *input2, output, functor, dims);
300 301 302 303
        break;
      case 3:
        ReduceGradFunctor<DeviceContext, T, 3, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
304
            *input2, output, functor, dims);
305 306 307 308
        break;
      case 4:
        ReduceGradFunctor<DeviceContext, T, 4, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
309
            *input2, output, functor, dims);
310 311 312 313
        break;
      case 5:
        ReduceGradFunctor<DeviceContext, T, 5, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
314
            *input2, output, functor, dims);
315 316 317 318
        break;
      case 6:
        ReduceGradFunctor<DeviceContext, T, 6, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
319
            *input2, output, functor, dims);
320 321
        break;
      default:
322 323
        HandleLargeDimGrad<DeviceContext, T, Functor>(
            context, input0, input1, input2, output, functor, dims);
324 325 326 327 328
        break;
    }
  }
}

329 330
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
331
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
332
 public:
333 334
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
335
    bool reduce_all = context.Attr<bool>("reduce_all");
336 337 338
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
339

340 341 342
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

343 344 345 346 347 348 349 350 351 352 353
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
354 355 356 357 358 359 360 361 362 363 364
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

365 366
    const std::vector<int> const_dims = dims;

L
lvmengsi 已提交
367 368 369
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;
370 371 372 373
    Functor functor;
    LaunchReduceGradKernel<DeviceContext, T, Functor>(context, input0, input1,
                                                      input2, output, functor,
                                                      const_dims, reduce_all);
G
guosheng 已提交
374
  }
375 376 377 378 379 380

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
381 382 383
      auto in_kernel_type = framework::OpKernelType(
          framework::TransToProtoVarType(pre_input->dtype()),
          context.GetPlace());
384 385 386 387 388 389 390 391 392 393 394 395
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
396
};
G
guosheng 已提交
397

398 399 400
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
401

402
  void InferShape(framework::InferShapeContext* ctx) const override {
403 404
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
405 406 407
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
408 409 410 411 412 413
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
414

415
    for (size_t i = 0; i < dims.size(); ++i) {
416
      PADDLE_ENFORCE_LT(dims[i], x_rank,
417 418 419 420 421
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
422 423 424 425 426 427
      PADDLE_ENFORCE_GE(dims[i], -x_rank,
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
428 429 430 431 432 433 434
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
435
        ctx->SetOutputDim("Out",
436
                          phi::make_ddim(std::vector<int64_t>(x_rank, 1)));
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
454 455 456
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
457
      auto out_dims = phi::make_ddim(dims_vector);
458
      ctx->SetOutputDim("Out", out_dims);
459
      if (dims.size() > 0 && dims[0] != 0) {
460 461 462 463 464
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
483 484 485 486
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_mlu_place(ctx.GetPlace()),
487 488 489
          true,
          platform::errors::InvalidArgument(
              "float16 can only be used on GPU or NPU or MLU place"));
490 491 492
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
493 494
};

G
Guo Sheng 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

508 509 510
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
511

512
  void InferShape(framework::InferShapeContext* ctx) const override {
513 514 515
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
516 517 518
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
519
    for (size_t i = 0; i < dims.size(); ++i) {
520
      PADDLE_ENFORCE_LT(dims[i], x_rank,
521 522 523 524 525
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
526
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
527 528 529 530 531 532
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
533
    }
534
  }
535 536 537 538

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
539
    int out_dtype = ctx.Attr<int>("out_dtype");
J
jakpiase 已提交
540
    auto input_data_type =
541 542 543 544
        (out_dtype >= 0)
            ? static_cast<framework::proto::VarType::Type>(out_dtype)
            : OperatorWithKernel::IndicateVarDataType(
                  ctx, framework::GradVarName("Out"));
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
562
  }
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
587 588 589 590 591 592 593 594 595 596
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
597 598
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
599 600
        .SetDefault(false)
        .AsExtra();
601 602
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
603

604 605 606
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
607

608 609
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
610
  }
611 612 613 614

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
615 616
};

617
#if defined(__HIPCC__) || defined(__NVCC__) || defined(__xpu__)
618 619
template <typename T, template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
620 621 622 623 624 625 626
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
627
    auto pt_out_dtype = paddle::framework::TransToPhiDataType(
628
        static_cast<framework::proto::VarType::Type>(out_dtype));
629
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
630 631 632 633
#ifdef PADDLE_WITH_XPU_KP
    auto& dev_ctx =
        context.template device_context<paddle::platform::XPUDeviceContext>();
#else
634
    auto& dev_ctx = context.cuda_device_context();
635
#endif
636
    if (out_dtype >= 0) {
637
      output->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
638
    } else {
639
      output->mutable_data(dev_ctx.GetPlace(), input->dtype());
640
    }
641 642 643

    std::vector<int64_t> dims_int64{dims.begin(), dims.end()};

644
    phi::Reduce<T, ReduceOp, TransformOp>(
645
        dev_ctx, *input, reduce_all, dims_int64, false, pt_out_dtype, output);
646 647
  }
};
648

649
#ifndef PADDLE_WITH_XPU_KP
650 651 652 653 654 655 656
template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
657

658 659 660 661
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
662
    auto pt_out_dtype = framework::TransToPhiDataType(
663
        static_cast<framework::proto::VarType::Type>(out_dtype));
664 665 666 667 668 669 670 671 672 673 674 675
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    // make new tensor
    framework::Tensor new_d_out(d_out->type());
    new_d_out.ShareDataWith(*d_out);
676
    new_d_out.Resize(phi::make_ddim(update_dims));
677 678
    auto& dev_ctx = context.cuda_device_context();
    if (out_dtype > 0) {
679
      d_x->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
680
    } else {
681
      d_x->mutable_data(dev_ctx.GetPlace(), d_out->dtype());
682
    }
683 684
    auto pt_d_out = paddle::experimental::MakePhiDenseTensor(new_d_out);
    auto pt_d_x = paddle::experimental::MakePhiDenseTensor(*d_x);
685
    if (out_dtype <= 0) {
686
      pt_out_dtype = d_out->dtype();
687
    }
688

689
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
690
    phi::ReduceGrad<T, TransformOp<T, MPType>>(
691 692 693 694
        dev_ctx, pt_d_out.get(), pt_d_x.get(), pt_out_dtype,
        TransformOp<T, MPType>(reduce_num));
  }
};
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

template <typename T>
struct EqualFunctor {
  inline T initial() { return static_cast<T>(0.0f); }

  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return static_cast<T>(a == b);
  }
};

template <typename T, typename Enable = void>
struct DivideFunctor {
  inline T initial() { return static_cast<T>(1.0f); }

  inline HOSTDEVICE T operator()(const T a, const T b) const { return a / b; }
};

template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaAMaxAMinGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
    auto* out_y = context.Input<Tensor>("Out");
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
    auto pt_out_dtype = framework::TransToPhiDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    auto& dev_ctx = context.cuda_device_context();

    // make new tensor reduce_out
    phi::DenseTensor new_y(out_y->type());
    new_y.ShareDataWith(*out_y);
    new_y.Resize(phi::make_ddim(update_dims));

    // make new tensor d_out
    phi::DenseTensor new_dout(d_out->type());
    new_dout.ShareDataWith(*d_out);
    new_dout.Resize(phi::make_ddim(update_dims));
    d_x->mutable_data(dev_ctx.GetPlace(), d_out->dtype());

    auto new_in = paddle::experimental::MakePhiDenseTensor(*in_x);
    auto new_in_tensor = new_in.get();

    auto new_dx = paddle::experimental::MakePhiDenseTensor(*d_x);
    auto new_dx_tensor = new_dx.get();

    // make equal_out
    phi::DenseTensor* equal_out = new phi::DenseTensor();
    equal_out->Resize(in_x->dims());
    dev_ctx.template Alloc<T>(equal_out);
    auto equal_out_tensor = *equal_out;

    // make new tensor equal_count
    phi::DenseTensor* equal_count = new phi::DenseTensor();
    equal_count->Resize(phi::make_ddim(update_dims));
    dev_ctx.template Alloc<T>(equal_count);

    // compute
    // 1. equal_out = Equal(x, y)
    std::vector<const phi::DenseTensor*> equal_inputs = {&new_y, new_in_tensor};
    std::vector<phi::DenseTensor*> equal_outputs = {&equal_out_tensor};
    phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
        dev_ctx, equal_inputs, &equal_outputs, 0, EqualFunctor<T>());
    // 2. equal_count = reduceSum(equal_out)
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
    phi::funcs::ReduceKernel<T, T, kps::AddFunctor,
                             kps::IdentityFunctor<T, MPType>>(
        dev_ctx, equal_out_tensor, equal_count,
        kps::IdentityFunctor<T, MPType>(), reduce_dims, false);

    // 3. dx = Div(dout, equal_out)
    std::vector<const phi::DenseTensor*> grad_inputs = {&equal_out_tensor,
                                                        equal_count};
    std::vector<phi::DenseTensor*> grad_outputs = {new_dx_tensor};
    phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
        dev_ctx, grad_inputs, &grad_outputs, 0, DivideFunctor<T>());
    delete equal_out;
    delete equal_count;
  }
};
788
#endif
789
#endif
790

G
guosheng 已提交
791 792
}  // namespace operators
}  // namespace paddle
793

794 795
namespace ops = paddle::operators;

H
hong 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
810 811 812 813 814
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
815 816 817 818
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);