reduce_op.h 28.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/data_type_transform.h"
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
26
#include "paddle/phi/kernels/funcs/math_function.h"
27

28
// only can include the headers in paddle/phi/api dirs
29
#include "paddle/fluid/framework/convert_utils.h"
30 31
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/kernels/cpu/reduce.h"
32

33
#if defined(__HIPCC__) || defined(__NVCC__) || defined(__xpu__)
34 35
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
36
#endif
G
guosheng 已提交
37 38 39 40

namespace paddle {
namespace operators {

41 42
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
43 44
    paddle::operators::ReduceFunctor<DeviceContext, OutT, NDIM, RDIM,     \
                                     Functor>(                            \
45 46
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
47 48
  }

49
using Tensor = framework::Tensor;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
using DDim = framework::DDim;

inline void GetShuffledDim(const DDim& src_dims, DDim* dst_dims,
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) = src_dims[reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = reduced_dims[i];
    src_dims_check[reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
                                            int dim_size, bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e, dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size, e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
96 97 98 99 100 101 102 103 104 105 106
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
                      const Tensor* input, Tensor* shuffled_input,
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

107
  phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  trans(context.template device_context<DeviceContext>(), *input,
        shuffled_input, perm_axis);
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
                    const Tensor* input, Tensor* output,
                    const std::vector<int>& dims, bool keep_dim) {
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
138
  paddle::operators::ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
139 140 141 142 143 144 145 146 147 148
      context.template device_context<DeviceContext>(), shuffled_input, output,
      {1}, keep_dim);
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
                        const framework::Tensor* dout, framework::Tensor* dx,
149
                        Functor functor, const std::vector<int>& dims) {
150 151 152 153 154 155 156 157 158 159 160 161 162
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
      context.template device_context<DeviceContext>(), shuffled_x, *out, *dout,
163
      dx, functor, {1});
164 165 166 167 168 169 170
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
171
  phi::funcs::TransposeNormal<DeviceContext, T> trans;
172 173 174
  trans(context.template device_context<DeviceContext>(), dx_tmp, dx,
        origin_axis);
}
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
231 232 233
    }
  }
};
Q
QI JUN 已提交
234
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
235
class ReduceKernel : public framework::OpKernel<T> {
236 237 238 239 240 241 242 243
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;
244
    auto* input = context.Input<Tensor>("X");
245

246
    if (out_dtype < 0) {
247 248
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(
          framework::TransToProtoVarType(input->dtype()));
249 250 251
    } else {
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
    }
252 253 254 255 256 257 258 259 260

    auto& dev_ctx = context.device_context<DeviceContext>();
    output->mutable_data(
        dev_ctx.GetPlace(),
        static_cast<framework::proto::VarType::Type>(cast_out_dtype));

    std::vector<int64_t> tmp_dims(dims.begin(), dims.end());

    // call new kernel
261 262 263
    phi::Reduce<typename framework::ConvertToPhiContext<DeviceContext>::TYPE, T,
                Functor>(
        static_cast<const typename framework::ConvertToPhiContext<
W
Wilber 已提交
264
            DeviceContext>::TYPE&>(dev_ctx),
265
        *input, reduce_all, tmp_dims, keep_dim,
266
        framework::TransToPhiDataType(cast_out_dtype), output);
267 268
  }
};
269

270 271 272 273 274
template <typename DeviceContext, typename T, typename Functor>
void LaunchReduceGradKernel(const framework::ExecutionContext& context,
                            const framework::Tensor* input0,
                            const framework::Tensor* input1,
                            const framework::Tensor* input2,
275
                            paddle::framework::Tensor* output, Functor functor,
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = EigenVector<T>::Flatten(*input0);
    auto x_reduce = EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
    auto x_grad = EigenVector<T>::Flatten(*output);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
    functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<DeviceContext, T, 1, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
295
            *input2, output, functor, dims);
296 297 298 299
        break;
      case 2:
        ReduceGradFunctor<DeviceContext, T, 2, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
300
            *input2, output, functor, dims);
301 302 303 304
        break;
      case 3:
        ReduceGradFunctor<DeviceContext, T, 3, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
305
            *input2, output, functor, dims);
306 307 308 309
        break;
      case 4:
        ReduceGradFunctor<DeviceContext, T, 4, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
310
            *input2, output, functor, dims);
311 312 313 314
        break;
      case 5:
        ReduceGradFunctor<DeviceContext, T, 5, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
315
            *input2, output, functor, dims);
316 317 318 319
        break;
      case 6:
        ReduceGradFunctor<DeviceContext, T, 6, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
320
            *input2, output, functor, dims);
321 322
        break;
      default:
323 324
        HandleLargeDimGrad<DeviceContext, T, Functor>(
            context, input0, input1, input2, output, functor, dims);
325 326 327 328 329
        break;
    }
  }
}

330 331
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
332
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
333
 public:
334 335
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
336
    bool reduce_all = context.Attr<bool>("reduce_all");
337 338 339
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
340

341 342 343
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

344 345 346 347 348 349 350 351 352 353 354
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
355 356 357 358 359 360 361 362 363 364 365
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

366 367
    const std::vector<int> const_dims = dims;

L
lvmengsi 已提交
368 369 370
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;
371 372 373 374
    Functor functor;
    LaunchReduceGradKernel<DeviceContext, T, Functor>(context, input0, input1,
                                                      input2, output, functor,
                                                      const_dims, reduce_all);
G
guosheng 已提交
375
  }
376 377 378 379 380 381

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
382 383 384
      auto in_kernel_type = framework::OpKernelType(
          framework::TransToProtoVarType(pre_input->dtype()),
          context.GetPlace());
385 386 387 388 389 390 391 392 393 394 395 396
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
397
};
G
guosheng 已提交
398

399 400 401
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
402

403
  void InferShape(framework::InferShapeContext* ctx) const override {
404 405
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
406 407 408
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
409 410 411 412 413 414
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
415

416
    for (size_t i = 0; i < dims.size(); ++i) {
417
      PADDLE_ENFORCE_LT(dims[i], x_rank,
418 419 420 421 422
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
423 424 425 426 427 428
      PADDLE_ENFORCE_GE(dims[i], -x_rank,
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
429 430 431 432 433 434 435
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
436
        ctx->SetOutputDim("Out",
437
                          phi::make_ddim(std::vector<int64_t>(x_rank, 1)));
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
455 456 457
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
458
      auto out_dims = phi::make_ddim(dims_vector);
459
      ctx->SetOutputDim("Out", out_dims);
460
      if (dims.size() > 0 && dims[0] != 0) {
461 462 463 464 465
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
484 485 486 487
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_mlu_place(ctx.GetPlace()),
488 489 490
          true,
          platform::errors::InvalidArgument(
              "float16 can only be used on GPU or NPU or MLU place"));
491 492 493
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
494 495
};

G
Guo Sheng 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

509 510 511
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
512

513
  void InferShape(framework::InferShapeContext* ctx) const override {
514 515 516
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
517 518 519
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
520
    for (size_t i = 0; i < dims.size(); ++i) {
521
      PADDLE_ENFORCE_LT(dims[i], x_rank,
522 523 524 525 526
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
527
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
528 529 530 531 532 533
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
534
    }
535
  }
536 537 538 539

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
540
    int out_dtype = ctx.Attr<int>("out_dtype");
J
jakpiase 已提交
541
    auto input_data_type =
542 543 544 545
        (out_dtype >= 0)
            ? static_cast<framework::proto::VarType::Type>(out_dtype)
            : OperatorWithKernel::IndicateVarDataType(
                  ctx, framework::GradVarName("Out"));
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
563
  }
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
588 589 590 591 592 593 594 595 596 597
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
598 599
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
600 601
        .SetDefault(false)
        .AsExtra();
602 603
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
604

605 606 607
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
608

609 610
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
611
  }
612 613 614 615

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
616 617
};

618
#if defined(__HIPCC__) || defined(__NVCC__) || defined(__xpu__)
619 620
template <typename T, template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
621 622 623 624 625 626 627
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
628
    auto pt_out_dtype = paddle::framework::TransToPhiDataType(
629
        static_cast<framework::proto::VarType::Type>(out_dtype));
630
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
631 632 633 634
#ifdef PADDLE_WITH_XPU_KP
    auto& dev_ctx =
        context.template device_context<paddle::platform::XPUDeviceContext>();
#else
635
    auto& dev_ctx = context.cuda_device_context();
636
#endif
637
    if (out_dtype >= 0) {
638
      output->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
639
    } else {
640
      output->mutable_data(dev_ctx.GetPlace(), input->dtype());
641
    }
642 643 644

    std::vector<int64_t> dims_int64{dims.begin(), dims.end()};

645
    phi::Reduce<T, ReduceOp, TransformOp>(
646
        dev_ctx, *input, reduce_all, dims_int64, false, pt_out_dtype, output);
647 648
  }
};
649

650
#ifndef PADDLE_WITH_XPU_KP
651 652 653 654 655 656 657 658 659 660 661
template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
662
    auto pt_out_dtype = framework::TransToPhiDataType(
663
        static_cast<framework::proto::VarType::Type>(out_dtype));
664 665 666 667 668 669 670 671 672 673 674 675
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    // make new tensor
    framework::Tensor new_d_out(d_out->type());
    new_d_out.ShareDataWith(*d_out);
676
    new_d_out.Resize(phi::make_ddim(update_dims));
677 678
    auto& dev_ctx = context.cuda_device_context();
    if (out_dtype > 0) {
679
      d_x->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
680
    } else {
681
      d_x->mutable_data(dev_ctx.GetPlace(), d_out->dtype());
682
    }
683 684
    auto pt_d_out = paddle::experimental::MakePhiDenseTensor(new_d_out);
    auto pt_d_x = paddle::experimental::MakePhiDenseTensor(*d_x);
685
    if (out_dtype <= 0) {
686
      pt_out_dtype = d_out->dtype();
687 688
    }
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
689
    phi::ReduceGrad<T, TransformOp<T, MPType>>(
690 691 692 693
        dev_ctx, pt_d_out.get(), pt_d_x.get(), pt_out_dtype,
        TransformOp<T, MPType>(reduce_num));
  }
};
694
#endif
695
#endif
696

G
guosheng 已提交
697 698
}  // namespace operators
}  // namespace paddle
699

700 701
namespace ops = paddle::operators;

H
hong 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
716 717 718 719 720
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
721 722 723 724
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);