reduce_op.h 30.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21
#include "paddle/fluid/framework/data_type_transform.h"
22
#include "paddle/fluid/framework/tensor_util.h"
23
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
24
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
25
#include "paddle/phi/kernels/funcs/math_function.h"
26

27
// only can include the headers in paddle/phi/api dirs
28
#include "paddle/fluid/framework/convert_utils.h"
29 30
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/kernels/cpu/reduce.h"
31

32
#if defined(__HIPCC__) || defined(__NVCC__)
33 34
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
35
#endif
G
guosheng 已提交
36 37 38 39

namespace paddle {
namespace operators {

40 41
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
42 43
    paddle::operators::ReduceFunctor<DeviceContext, OutT, NDIM, RDIM,     \
                                     Functor>(                            \
44 45
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
46 47
  }

48
using Tensor = framework::Tensor;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
using DDim = framework::DDim;

inline void GetShuffledDim(const DDim& src_dims, DDim* dst_dims,
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) = src_dims[reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = reduced_dims[i];
    src_dims_check[reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
                                            int dim_size, bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e, dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size, e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
95 96 97 98 99 100 101 102 103 104 105
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
                      const Tensor* input, Tensor* shuffled_input,
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

106
  phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  trans(context.template device_context<DeviceContext>(), *input,
        shuffled_input, perm_axis);
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
                    const Tensor* input, Tensor* output,
                    const std::vector<int>& dims, bool keep_dim) {
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
137
  paddle::operators::ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
138 139 140 141 142 143 144 145 146 147
      context.template device_context<DeviceContext>(), shuffled_input, output,
      {1}, keep_dim);
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
                        const framework::Tensor* dout, framework::Tensor* dx,
148
                        Functor functor, const std::vector<int>& dims) {
149 150 151 152 153 154 155 156 157 158 159 160 161
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
      context.template device_context<DeviceContext>(), shuffled_x, *out, *dout,
162
      dx, functor, {1});
163 164 165 166 167 168 169
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
170
  phi::funcs::TransposeNormal<DeviceContext, T> trans;
171 172 173
  trans(context.template device_context<DeviceContext>(), dx_tmp, dx,
        origin_axis);
}
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
230 231 232
    }
  }
};
Q
QI JUN 已提交
233
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
234
class ReduceKernel : public framework::OpKernel<T> {
235 236 237 238 239 240 241 242
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;
243
    auto* input = context.Input<Tensor>("X");
244

245
    if (out_dtype < 0) {
246 247
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(
          framework::TransToProtoVarType(input->dtype()));
248 249 250
    } else {
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
    }
251 252 253 254 255 256 257 258 259

    auto& dev_ctx = context.device_context<DeviceContext>();
    output->mutable_data(
        dev_ctx.GetPlace(),
        static_cast<framework::proto::VarType::Type>(cast_out_dtype));

    std::vector<int64_t> tmp_dims(dims.begin(), dims.end());

    // call new kernel
260 261
    phi::Reduce<typename framework::ConvertToPtenContext<DeviceContext>::TYPE,
                T, Functor>(
W
Wilber 已提交
262 263
        static_cast<const typename framework::ConvertToPtenContext<
            DeviceContext>::TYPE&>(dev_ctx),
264
        *input, reduce_all, tmp_dims, keep_dim,
265
        framework::TransToPtenDataType(cast_out_dtype), output);
266 267 268 269
  }
};
template <typename DeviceContext, typename OutT, typename Functor>
class BoolReduceKernel : public framework::OpKernel<OutT> {
G
guosheng 已提交
270 271
 public:
  void Compute(const framework::ExecutionContext& context) const override {
272
    bool reduce_all = context.Attr<bool>("reduce_all");
273 274
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
275
    output->mutable_data<OutT>(context.GetPlace());
276 277 278 279

    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");

280 281 282 283 284 285 286 287 288 289 290 291
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

292 293
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
294 295
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
296 297 298 299
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
300
      functor(place, &x, &out, reduce_dim);
301
    } else {
302 303
      int ndim = input->dims().size();
      int rdim = dims.size();
304
      // comments for accelerating compiling temporarily.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
G
guosheng 已提交
326 327 328
    }
  }
};
329

330 331 332 333 334
template <typename DeviceContext, typename T, typename Functor>
void LaunchReduceGradKernel(const framework::ExecutionContext& context,
                            const framework::Tensor* input0,
                            const framework::Tensor* input1,
                            const framework::Tensor* input2,
335
                            paddle::framework::Tensor* output, Functor functor,
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = EigenVector<T>::Flatten(*input0);
    auto x_reduce = EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
    auto x_grad = EigenVector<T>::Flatten(*output);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
    functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<DeviceContext, T, 1, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
355
            *input2, output, functor, dims);
356 357 358 359
        break;
      case 2:
        ReduceGradFunctor<DeviceContext, T, 2, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
360
            *input2, output, functor, dims);
361 362 363 364
        break;
      case 3:
        ReduceGradFunctor<DeviceContext, T, 3, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
365
            *input2, output, functor, dims);
366 367 368 369
        break;
      case 4:
        ReduceGradFunctor<DeviceContext, T, 4, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
370
            *input2, output, functor, dims);
371 372 373 374
        break;
      case 5:
        ReduceGradFunctor<DeviceContext, T, 5, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
375
            *input2, output, functor, dims);
376 377 378 379
        break;
      case 6:
        ReduceGradFunctor<DeviceContext, T, 6, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
380
            *input2, output, functor, dims);
381 382
        break;
      default:
383 384
        HandleLargeDimGrad<DeviceContext, T, Functor>(
            context, input0, input1, input2, output, functor, dims);
385 386 387 388 389
        break;
    }
  }
}

390 391
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
392
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
393
 public:
394 395
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
396
    bool reduce_all = context.Attr<bool>("reduce_all");
397 398 399
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
400

401 402 403
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

404 405 406 407 408 409 410 411 412 413 414
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
415 416 417 418 419 420 421 422 423 424 425
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

426 427
    const std::vector<int> const_dims = dims;

L
lvmengsi 已提交
428 429 430
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;
431 432 433 434
    Functor functor;
    LaunchReduceGradKernel<DeviceContext, T, Functor>(context, input0, input1,
                                                      input2, output, functor,
                                                      const_dims, reduce_all);
G
guosheng 已提交
435
  }
436 437 438 439 440 441

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
442 443 444
      auto in_kernel_type = framework::OpKernelType(
          framework::TransToProtoVarType(pre_input->dtype()),
          context.GetPlace());
445 446 447 448 449 450 451 452 453 454 455 456
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
457
};
G
guosheng 已提交
458

459 460 461
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
462

463
  void InferShape(framework::InferShapeContext* ctx) const override {
464 465
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
466 467 468
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
469 470 471 472 473 474
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
475

476
    for (size_t i = 0; i < dims.size(); ++i) {
477
      PADDLE_ENFORCE_LT(dims[i], x_rank,
478 479 480 481 482
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
483 484 485 486 487 488
      PADDLE_ENFORCE_GE(dims[i], -x_rank,
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
489 490 491 492 493 494 495
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
496
        ctx->SetOutputDim("Out",
497
                          phi::make_ddim(std::vector<int64_t>(x_rank, 1)));
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
515 516 517
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
518
      auto out_dims = phi::make_ddim(dims_vector);
519
      ctx->SetOutputDim("Out", out_dims);
520
      if (dims.size() > 0 && dims[0] != 0) {
521 522 523 524 525
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
F
furnace 已提交
544 545 546
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_npu_place(ctx.GetPlace()),
                        true,
547
                        platform::errors::InvalidArgument(
F
furnace 已提交
548
                            "float16 can only be used on GPU or NPU place"));
549 550 551
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
552 553
};

G
Guo Sheng 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

567 568 569
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
570

571
  void InferShape(framework::InferShapeContext* ctx) const override {
572 573 574
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
575 576 577
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
578
    for (size_t i = 0; i < dims.size(); ++i) {
579
      PADDLE_ENFORCE_LT(dims[i], x_rank,
580 581 582 583 584
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
585
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
586 587 588 589 590 591
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
592
    }
593
  }
594 595 596 597

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
598
    int out_dtype = ctx.Attr<int>("out_dtype");
J
jakpiase 已提交
599
    auto input_data_type =
600 601 602 603
        (out_dtype >= 0)
            ? static_cast<framework::proto::VarType::Type>(out_dtype)
            : OperatorWithKernel::IndicateVarDataType(
                  ctx, framework::GradVarName("Out"));
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
621
  }
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
646 647 648 649 650 651 652 653 654 655
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
656 657
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
658 659
        .SetDefault(false)
        .AsExtra();
660 661
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
662

663 664 665
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
666

667 668
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
669
  }
670 671 672 673

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
674 675
};

676
#if defined(__HIPCC__) || defined(__NVCC__)
677 678
template <typename T, template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
679 680 681 682 683 684 685
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
686 687
    auto pt_out_dtype = paddle::framework::TransToPtenDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));
688 689
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");

690 691
    auto& dev_ctx = context.cuda_device_context();

692
    if (out_dtype >= 0) {
693
      output->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
694
    } else {
695
      output->mutable_data(dev_ctx.GetPlace(), input->dtype());
696
    }
697 698 699

    std::vector<int64_t> dims_int64{dims.begin(), dims.end()};

700
    phi::Reduce<T, ReduceOp, TransformOp>(
701
        dev_ctx, *input, reduce_all, dims_int64, false, pt_out_dtype, output);
702 703
  }
};
704 705 706 707 708 709 710 711 712 713 714 715

template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
716 717
    auto pt_out_dtype = framework::TransToPtenDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));
718 719 720 721 722 723 724 725 726 727 728 729
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    // make new tensor
    framework::Tensor new_d_out(d_out->type());
    new_d_out.ShareDataWith(*d_out);
730
    new_d_out.Resize(phi::make_ddim(update_dims));
731 732
    auto& dev_ctx = context.cuda_device_context();
    if (out_dtype > 0) {
733
      d_x->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
734
    } else {
735
      d_x->mutable_data(dev_ctx.GetPlace(), d_out->dtype());
736 737 738 739
    }
    auto pt_d_out = paddle::experimental::MakePtenDenseTensor(new_d_out);
    auto pt_d_x = paddle::experimental::MakePtenDenseTensor(*d_x);
    if (out_dtype <= 0) {
740
      pt_out_dtype = d_out->dtype();
741 742
    }
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
743
    phi::ReduceGrad<T, TransformOp<T, MPType>>(
744 745 746 747
        dev_ctx, pt_d_out.get(), pt_d_x.get(), pt_out_dtype,
        TransformOp<T, MPType>(reduce_num));
  }
};
748 749
#endif

G
guosheng 已提交
750 751
}  // namespace operators
}  // namespace paddle
752

753 754
namespace ops = paddle::operators;

H
hong 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
769 770 771 772 773
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
774 775 776 777
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);