reduce_op.h 19.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

22 23
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
24
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
G
guosheng 已提交
25 26 27 28

namespace paddle {
namespace operators {

29 30
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
31
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>(              \
32 33
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
34 35
  }

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
72 73 74 75 76 77 78 79 80
      HANDLE_DIM(6, 5);
      HANDLE_DIM(6, 4);
      HANDLE_DIM(6, 3);
      HANDLE_DIM(6, 2);
      HANDLE_DIM(6, 1);
      HANDLE_DIM(5, 4);
      HANDLE_DIM(5, 3);
      HANDLE_DIM(5, 2);
      HANDLE_DIM(5, 1);
81 82 83 84 85 86 87 88 89 90
      HANDLE_DIM(4, 3);
      HANDLE_DIM(4, 2);
      HANDLE_DIM(4, 1);
      HANDLE_DIM(3, 2);
      HANDLE_DIM(3, 1);
      HANDLE_DIM(2, 1);
      HANDLE_DIM(1, 1);
    }
  }
};
Q
QI JUN 已提交
91
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
92
class ReduceKernel : public framework::OpKernel<T> {
93 94 95 96 97 98 99 100 101
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;

102 103 104 105 106 107 108 109 110 111 112 113
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    if (out_dtype < 0) {
      auto* cast_input = context.Input<Tensor>("X");
      cast_out_dtype =
          static_cast<framework::proto::VarType::Type>(cast_input->type());
      framework::VisitDataType(
          cast_out_dtype,
          ReduceKernelFunctor<DeviceContext, T, Functor>(
              cast_input, output, dims, keep_dim, reduce_all, context));
    } else {
      Tensor tmp_tensor;
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
      auto* input = context.Input<Tensor>("X");

      tmp_tensor.Resize(input->dims());
      framework::VisitDataType(
          cast_out_dtype,
          CastOpFunctor<DeviceContext, T>(
              input, &tmp_tensor,
              context.template device_context<DeviceContext>()));
      framework::VisitDataType(
          cast_out_dtype,
          ReduceKernelFunctor<DeviceContext, T, Functor>(
              &tmp_tensor, output, dims, keep_dim, reduce_all, context));
    }
  }
};

template <typename DeviceContext, typename OutT, typename Functor>
class BoolReduceKernel : public framework::OpKernel<OutT> {
G
guosheng 已提交
143 144
 public:
  void Compute(const framework::ExecutionContext& context) const override {
145
    bool reduce_all = context.Attr<bool>("reduce_all");
146 147
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
148
    output->mutable_data<OutT>(context.GetPlace());
149 150 151 152

    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");

153 154 155 156 157 158 159 160 161 162 163 164
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

165 166
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
167 168
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
169 170 171 172
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
173
      functor(place, &x, &out, reduce_dim);
174
    } else {
175 176
      int ndim = input->dims().size();
      int rdim = dims.size();
177 178 179 180 181 182 183 184 185 186
      // comments for accelerating compiling temporarily.
      //      HANDLE_DIM(6, 5);
      //      HANDLE_DIM(6, 4);
      //      HANDLE_DIM(6, 3);
      //      HANDLE_DIM(6, 2);
      //      HANDLE_DIM(6, 1);
      //      HANDLE_DIM(5, 4);
      //      HANDLE_DIM(5, 3);
      //      HANDLE_DIM(5, 2);
      //      HANDLE_DIM(5, 1);
W
whs 已提交
187 188 189 190 191 192 193
      HANDLE_DIM(4, 3);
      HANDLE_DIM(4, 2);
      HANDLE_DIM(4, 1);
      HANDLE_DIM(3, 2);
      HANDLE_DIM(3, 1);
      HANDLE_DIM(2, 1);
      HANDLE_DIM(1, 1);
G
guosheng 已提交
194 195 196
    }
  }
};
197 198
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
199
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
200
 public:
201 202
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
203
    bool reduce_all = context.Attr<bool>("reduce_all");
204 205 206
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
207

208 209 210
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

211 212 213 214 215 216 217 218 219 220 221
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
222 223 224 225 226 227 228 229 230 231 232
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

L
lvmengsi 已提交
233 234 235 236
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;

237 238 239 240 241 242 243 244 245 246
    if (reduce_all) {
      auto x = EigenVector<T>::Flatten(*input0);
      auto x_reduce = EigenVector<T>::From(*input1);
      auto x_reduce_grad = EigenVector<T>::From(*input2);
      auto x_grad = EigenVector<T>::Flatten(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto broadcast_dim =
          Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
      Functor functor;
247
      functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
248 249
              broadcast_dim[0]);
    } else {
250
      int rank = input0->dims().size();
251 252
      switch (rank) {
        case 1:
253 254 255
          ReduceGradFunctor<DeviceContext, T, 1, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
256 257
          break;
        case 2:
258 259 260
          ReduceGradFunctor<DeviceContext, T, 2, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
261 262
          break;
        case 3:
263 264 265
          ReduceGradFunctor<DeviceContext, T, 3, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
266 267
          break;
        case 4:
268 269 270
          ReduceGradFunctor<DeviceContext, T, 4, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
271 272
          break;
        case 5:
273 274 275
          ReduceGradFunctor<DeviceContext, T, 5, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
276 277
          break;
        case 6:
278 279 280
          ReduceGradFunctor<DeviceContext, T, 6, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
281 282
          break;
      }
G
guosheng 已提交
283 284
    }
  }
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
      auto in_kernel_type =
          framework::OpKernelType(pre_input->type(), context.GetPlace());
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
305
};
G
guosheng 已提交
306

307 308 309
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
310

311
  void InferShape(framework::InferShapeContext* ctx) const override {
312 313
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
314 315
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
316
    PADDLE_ENFORCE_LE(x_rank, 6,
317 318 319 320 321
                      platform::errors::InvalidArgument(
                          "The input tensor X's dimensions of ReduceOp "
                          "should be less equal than 6. But received X's "
                          "dimensions = %d, X's shape = [%s].",
                          x_rank, x_dims));
322
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
323 324 325 326 327 328
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
329

330
    for (size_t i = 0; i < dims.size(); ++i) {
331
      PADDLE_ENFORCE_LT(dims[i], x_rank,
332 333 334 335 336
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
        ctx->SetOutputDim(
            "Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
363 364 365
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
366 367
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
368
      if (dims.size() > 0 && dims[0] != 0) {
369 370 371 372 373 374 375
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
};

G
Guo Sheng 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

389 390 391
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
392

393
  void InferShape(framework::InferShapeContext* ctx) const override {
394 395 396
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
397 398
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
399 400 401 402 403
    PADDLE_ENFORCE_LE(x_rank, 6,
                      platform::errors::InvalidArgument(
                          "Tensors with rank at most 6 are supported by "
                          "ReduceOp. Received tensor with rank %d.",
                          x_rank));
404
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
405
    for (size_t i = 0; i < dims.size(); ++i) {
406
      PADDLE_ENFORCE_LT(dims[i], x_rank,
407 408 409 410 411
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
412
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
413 414 415 416 417 418
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
419
    }
420
  }
421 422 423 424

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
425 426 427 428 429 430
    int in_dtype = ctx.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      return framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          ctx.GetPlace());
    }
431 432 433
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
434
  }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
459 460 461 462 463 464 465 466 467 468
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
469 470
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
471

472 473 474
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
475

476 477
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
478
  }
479 480 481 482

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
483 484 485 486
};

}  // namespace operators
}  // namespace paddle
487

488 489
namespace ops = paddle::operators;

H
hong 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
504 505 506 507 508
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
509 510 511 512
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);