activation.py 51.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhiboniu 已提交
15 16 17
from ...fluid.layers import sigmoid  # noqa: F401
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
Z
zhiboniu 已提交
29 30
from paddle import _C_ops, in_dynamic_mode
from paddle.framework import core
31

32 33
__all__ = []

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

Z
zhiboniu 已提交
65
    if in_dynamic_mode():
66 67 68 69 70 71 72 73 74 75 76 77 78
        return _C_ops.celu(x, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='celu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


79
def elu(x, alpha=1.0, name=None):
80
    r"""
81 82
    elu activation.

83
    .. math::
84

Z
zhupengyang 已提交
85 86 87 88 89 90 91
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
92 93 94 95 96 97

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
98

99 100
    Returns:
        A Tensor with the same data type and shape as ``x`` .
101

102 103 104
    Examples:
        .. code-block:: python

105 106
            import paddle
            import paddle.nn.functional as F
107

Z
zhupengyang 已提交
108
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
109
            out = F.elu(x, alpha=0.2)
110 111
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
112 113
    """

Z
zhiboniu 已提交
114
    if in_dynamic_mode():
W
wanghuancoder 已提交
115
        return _C_ops.elu(x, 'alpha', alpha)
116 117 118 119 120 121 122 123 124 125 126 127

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


128
@inplace_apis_in_dygraph_only
129 130 131 132 133
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
134
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
W
wanghuancoder 已提交
135
    return _C_ops.elu_(x, 'alpha', alpha)
136 137


138
def gelu(x, approximate=False, name=None):
139
    r"""
140 141 142
    gelu activation.

    if approximate is True
143 144 145

    .. math::

146
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
147

148
    else
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
153

154 155 156 157 158
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
159

160 161
    Returns:
        A Tensor with the same data type and shape as ``x`` .
162

163 164 165
    Examples:
        .. code-block:: python

166 167
            import paddle
            import paddle.nn.functional as F
168

Z
zhupengyang 已提交
169 170 171 172 173 174 175
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
176 177
    """

178 179 180 181
    if in_dygraph_mode():
        return _C_ops.final_state_gelu(x, approximate)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
182
        return _C_ops.gelu(x, 'approximate', approximate)
183 184 185 186 187 188 189 190 191 192 193 194

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


195
def hardshrink(x, threshold=0.5, name=None):
196
    r"""
197 198 199 200 201
    hard shrinkage activation

    .. math::

        hardshrink(x)=
202 203 204 205 206 207 208
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
209 210 211 212 213 214 215 216 217 218 219 220 221

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

222 223
            import paddle
            import paddle.nn.functional as F
224

Z
zhupengyang 已提交
225
            x = paddle.to_tensor([-1, 0.3, 2.5])
226
            out = F.hardshrink(x) # [-1., 0., 2.5]
227 228

    """
Z
zhiboniu 已提交
229
    if in_dynamic_mode():
W
wanghuancoder 已提交
230
        return _C_ops.hard_shrink(x, 'threshold', threshold)
231 232 233 234 235 236 237 238 239 240 241 242 243

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


244
def hardtanh(x, min=-1.0, max=1.0, name=None):
245
    r"""
246 247 248 249
    hardtanh activation

    .. math::

250 251 252 253 254 255 256 257
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
258

259
    Parameters:
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

Z
zhiboniu 已提交
280
    if in_dynamic_mode():
W
wanghuancoder 已提交
281
        return _C_ops.brelu(x, 't_min', min, 't_max', max)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


297
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
298
    r"""
299 300 301 302 303 304 305 306
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
307 308 309 310 311 312 313
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
314 315 316

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
317 318
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

Z
zhiboniu 已提交
335
    if in_dynamic_mode():
W
wanghuancoder 已提交
336
        return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
337 338 339 340 341 342 343 344 345 346

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
347 348
        attrs={'slope': slope,
               'offset': offset})
349 350 351 352
    return out


def hardswish(x, name=None):
353
    r"""
354 355 356 357 358 359 360 361 362
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
363 364 365 366 367 368 369
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

Z
zhiboniu 已提交
389
    if in_dynamic_mode():
W
wanghuancoder 已提交
390
        return _C_ops.hard_swish(x)
391 392 393 394 395 396 397 398 399 400

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


401
def leaky_relu(x, negative_slope=0.01, name=None):
402
    r"""
403 404
    leaky_relu activation

405
    .. math::
406 407 408 409 410 411 412
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
430
            x = paddle.to_tensor([-2., 0., 1.])
431 432 433
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
Z
zhiboniu 已提交
434
    if in_dynamic_mode():
W
wanghuancoder 已提交
435
        return _C_ops.leaky_relu(x, 'alpha', negative_slope)
436 437 438 439 440 441 442 443 444 445 446 447 448

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


449
def prelu(x, weight, data_format="NCHW", name=None):
450 451 452 453 454 455 456 457 458 459 460 461 462
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
463 464
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
465 466 467 468 469 470 471 472 473 474 475 476

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
477 478 479 480 481
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
501 502 503 504 505 506 507 508 509 510 511

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

512 513 514
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
515 516 517 518 519 520 521 522

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
523 524
        mode = 'channel'

525 526 527
    if in_dygraph_mode():
        return _C_ops.final_state_prelu(x, weight, data_format, mode)
    if _in_legacy_dygraph():
528
        return _C_ops.prelu(x, weight, 'mode', mode, 'data_format', data_format)
529

530
    helper = LayerHelper('prelu', **locals())
531 532 533 534 535 536
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
537 538
        attrs={"mode": mode,
               "data_format": data_format})
539 540 541
    return out


542
def relu(x, name=None):
543
    """
544
    relu activation.
545

546
    .. math::
547 548 549 550

        out = max(x, 0)

    Parameters:
551 552 553
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
554 555

    Returns:
556
        A Tensor with the same data type and shape as ``x`` .
557 558 559 560

    Examples:
        .. code-block:: python

561 562 563
            import paddle
            import paddle.nn.functional as F
            import numpy as np
564

565 566
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
567 568
    """

569 570 571
    if in_dygraph_mode():
        return _C_ops.final_state_relu(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
572
        return _C_ops.relu(x)
573
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
574
    helper = LayerHelper('relu', **locals())
575 576 577 578 579
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


580
@inplace_apis_in_dygraph_only
581 582 583 584 585
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
586
    if in_dygraph_mode():
587
        return _C_ops.final_state_relu_(x)
588 589
    if _in_legacy_dygraph():
        return _C_ops.relu_(x)
590 591


592
def log_sigmoid(x, name=None):
593
    r"""
594
    log_sigmoid activation.
595

596
    .. math::
597

598
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
599

600 601 602 603
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
604

605 606
    Returns:
        A Tensor with the same data type and shape as ``x`` .
607

608 609 610
    Examples:
        .. code-block:: python

611 612
            import paddle
            import paddle.nn.functional as F
613

614 615
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
616 617
    """

Z
zhiboniu 已提交
618
    if in_dynamic_mode():
W
wanghuancoder 已提交
619
        return _C_ops.logsigmoid(x)
620 621

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
622 623
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
624 625 626
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
627 628


629
def maxout(x, groups, axis=1, name=None):
630
    r"""
631 632 633 634 635 636 637 638
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

639 640 641 642 643 644 645 646 647
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

Z
zhiboniu 已提交
685
    if in_dynamic_mode():
W
wanghuancoder 已提交
686
        return _C_ops.maxout(x, 'groups', groups, 'axis', axis)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups,
               'axis': axis})
    return out


707 708 709 710 711 712
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

713
        relu6(x) = min(max(0,x), 6)
714

715
    Parameters:
716 717 718 719 720 721 722 723 724 725
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

726 727 728
            import paddle
            import paddle.nn.functional as F
            import numpy as np
729

730 731
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
732 733
    """
    threshold = 6.0
Z
zhiboniu 已提交
734
    if in_dynamic_mode():
W
wanghuancoder 已提交
735
        return _C_ops.relu6(x, 'threshold', threshold)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
752
    r"""
753 754 755 756
    selu activation

    .. math::

757
        selu(x)= scale *
758 759 760 761 762 763
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
764

765
    Parameters:
766
        x (Tensor): The input Tensor with data type float32, float64.
767 768
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
769 770 771 772 773 774 775 776 777
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

778 779 780
            import paddle
            import paddle.nn.functional as F
            import numpy as np
781

782
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
783
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
784
    """
785 786 787 788 789 790 791 792
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
793 794 795
    if in_dygraph_mode():
        return _C_ops.final_state_selu(x, scale, alpha)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
796
        return _C_ops.selu(x, 'scale', scale, 'alpha', alpha)
797 798 799 800 801 802 803 804 805 806 807 808 809

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


M
minghaoBD 已提交
810
def silu(x, name=None):
811 812 813 814 815
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
816 817 818 819 820 821 822 823 824 825 826 827
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
828 829 830 831 832 833

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
834 835
    """

Z
zhiboniu 已提交
836
    if in_dynamic_mode():
W
wanghuancoder 已提交
837
        return _C_ops.silu(x)
M
minghaoBD 已提交
838 839 840 841 842 843 844 845

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


846
def softmax(x, axis=-1, dtype=None, name=None):
847
    r"""
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

873
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

922 923 924 925 926 927
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
928
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
929 930 931 932
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
933 934
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
935 936 937 938

    Examples:
        .. code-block:: python

939 940 941
            import paddle
            import paddle.nn.functional as F
            import numpy as np
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
960
    """
961 962 963

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
964
    use_cudnn = True
965

H
hong 已提交
966 967 968 969 970 971
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.final_state_softmax(outs_cast, axis)

    if _in_legacy_dygraph():
972
        outs_cast = x if dtype is None \
W
wanghuancoder 已提交
973 974
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
1003 1004


1005
@inplace_apis_in_dygraph_only
1006 1007 1008 1009 1010 1011 1012 1013
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
W
wanghuancoder 已提交
1014
    return _C_ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn)
1015 1016


1017
def softplus(x, beta=1, threshold=20, name=None):
1018
    r"""
1019 1020 1021 1022
    softplus activation

    .. math::

1023 1024
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1025

1026
    Parameters:
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1039 1040 1041
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1042

1043 1044
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1045
    """
Z
zhiboniu 已提交
1046
    if in_dynamic_mode():
W
wanghuancoder 已提交
1047
        return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
1063
    r"""
1064 1065 1066 1067
    softshrink activation

    .. math::

1068 1069 1070 1071 1072 1073 1074 1075
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1076

1077
    Parameters:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1089 1090 1091
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1092

1093 1094
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1095
    """
1096 1097 1098 1099 1100
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1101 1102 1103
    if in_dygraph_mode():
        return _C_ops.final_state_soft_shrink(x, threshold)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1104
        return _C_ops.softshrink(x, 'lambda', threshold)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
1119
    r"""
1120 1121 1122 1123
    softsign activation

    .. math::

1124
        softsign(x) = \frac{x}{1 + |x|}
1125

1126
    Parameters:
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1137 1138 1139
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1140

1141 1142
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1143
    """
Z
zhiboniu 已提交
1144
    if in_dynamic_mode():
W
wanghuancoder 已提交
1145
        return _C_ops.softsign(x)
1146 1147 1148 1149 1150 1151 1152 1153 1154

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1155
def swish(x, name=None):
1156
    r"""
1157 1158 1159 1160
    swish activation.

    .. math::

1161
        swish(x) = \frac{x}{1 + e^{-x}}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1181 1182 1183
    if in_dygraph_mode():
        return _C_ops.final_state_swish(x, 1.0)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1184
        return _C_ops.swish(x, 'beta', 1.0)
1185 1186 1187 1188 1189 1190 1191 1192

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
H
hong19860320 已提交
1193
        attrs={'beta': 1.0})
1194 1195 1196
    return out


1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1224
            x = paddle.to_tensor([-5., 0., 5.])
1225 1226
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1227 1228 1229
    if in_dygraph_mode():
        return _C_ops.final_state_mish(x, 20)
    if _in_legacy_dygraph():
1230 1231 1232 1233 1234 1235 1236 1237 1238
        return _C_ops.mish(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1239 1240 1241 1242 1243 1244
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1245
        tanhshrink(x) = x - tanh(x)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1258 1259 1260
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1261

1262 1263
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1264
    """
Z
zhiboniu 已提交
1265
    if in_dynamic_mode():
W
wanghuancoder 已提交
1266
        return _C_ops.tanh_shrink(x)
1267 1268 1269 1270 1271 1272 1273 1274 1275

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1276
def thresholded_relu(x, threshold=1.0, name=None):
1277
    r"""
1278 1279 1280 1281
    thresholded relu activation.

    .. math::

1282 1283 1284 1285 1286 1287 1288 1289
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

Z
zhiboniu 已提交
1311
    if in_dynamic_mode():
W
wanghuancoder 已提交
1312
        return _C_ops.thresholded_relu(x, 'threshold', threshold)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


1326
def log_softmax(x, axis=-1, dtype=None, name=None):
1327
    r"""
1328 1329
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1330 1331 1332

    .. math::

1333 1334 1335 1336
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1337 1338

    Parameters:
1339 1340 1341 1342 1343 1344 1345
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1346
            to ``dtype`` before the operation is performed. This is useful for
1347 1348 1349 1350 1351
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1352

1353
    Returns:
1354 1355
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1356 1357 1358 1359

    Examples:
        .. code-block:: python

1360 1361 1362
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1363 1364 1365 1366 1367 1368
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1381 1382 1383

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1384

1385
    if _non_static_mode():
1386
        if dtype is not None:
W
wanghuancoder 已提交
1387
            x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1388 1389 1390
        if _in_legacy_dygraph():
            return _C_ops.log_softmax(x, 'axis', axis)
        return _C_ops.final_state_log_softmax(x, axis)
1391

1392
    if dtype is None:
1393 1394 1395 1396 1397
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1398

1399
    helper = LayerHelper("log_softmax", **locals())
1400
    out_cast = x
1401
    if dtype is not None:
1402
        out_cast = helper.create_variable_for_type_inference(dtype)
1403 1404
        helper.append_op(
            type='cast',
1405 1406 1407
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1408 1409
                   'out_dtype': dtype})

1410
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1411
    helper.append_op(
1412 1413 1414 1415
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1416

1417
    return out
F
Feiyu Chan 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch 
            of independent distributions and the last dimension represents 
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
        hard (bool, optional): if True, the returned samples will be discretized as 
            one-hot vectors, but will be differentiated as if it is the soft sample 
            in autograd. Default is False.
        axis (int, optional): The axis along will be calculated softmax value. 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. 
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be 
        probability distributions that sum to 1 across ``axis``.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
        
    """
Z
zhiboniu 已提交
1525
    if in_dynamic_mode():
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        return _C_ops.gumbel_softmax(x, 'temperature', temperature, 'hard',
                                     hard, 'axis', axis)

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature,
               'hard': hard,
               'axis': axis})
    return out