activation.py 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
# TODO: define activation functions of neural network
__all__ = [
    #             'brelu',
    #            'elu',
    #            'erf',
    #            'gelu',
    #            'hard_shrink',
    #            'hard_sigmoid',
    #            'hard_swish',
    'hsigmoid',
    #            'leaky_relu',
    #            'logsigmoid',
    #            'maxout',
    #            'prelu',
    'relu',
    #            'relu6',
    #            'selu',
    'sigmoid',
    #            'soft_relu',
    #            'softmax',
    #            'softplus',
    #            'softshrink',
    #            'softsign',
    #            'swish',
    #            'tanh_shrink',
    #            'thresholded_relu',
    'log_softmax'
]
43 44 45 46
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
47
from ...fluid.data_feeder import check_variable_and_dtype
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

def hsigmoid(input,
             label,
             weight,
             bias,
             num_classes,
             path_table=None,
             path_code=None,
             is_sparse=False):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        weight (Variable): A tensor with shape (num_classes - 1, D) if not using custom tree(path_code and path_table is None), or (num_classes, D) if using custom tree.
        bias (Variable): A tensor with shape (num_classes - 1, 1) if not using custom tree(path_code and path_table is None), or (num_classes, 1) if using custom tree.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:

        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            main = fluid.Program()
            start = fluid.Program()
            feature_size = 6
            num_classes = 8
            with fluid.unique_name.guard():
                with fluid.program_guard(main, start):
                    x = fluid.data("input", [-1, feature_size],
                                  dtype="float32")
                    label = fluid.data("labels", [-1, 1], dtype="int64")
                    w = fluid.data("weight", (num_classes -1, feature_size), dtype="float32")
                    b = fluid.data("bias", (num_classes -1, ), dtype="float32")
                    y = F.hsigmoid(x, label, w, b, num_classes)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(start)
            feed_dict = {
                "input": np.random.randn(4, feature_size).astype(np.float32),
                "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
                "weight": np.random.randn(num_classes - 1, feature_size).astype(np.float32),
                "bias": np.random.randn(num_classes - 1, ).astype(np.float32),
            }
            y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
            print(y_np.shape)

          # (4, 1)
    """

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()

    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208


def relu(input, inplace=False, name=None):
    """
    ReLU Activation.

    .. math:

        out = max(x, 0)

    Parameters:
        input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
        inplace (bool, optional): If inplace is True, the input and output of ``ReLU`` are the same variable.
            Otherwise, the input and output of ``ReLU`` are different variables. Default: False. Note that if x is
            more than one OPs' input, inplace must be False.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Output of relu operator, a Tensor with shape same as input

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn.functional as functional
          import numpy as np

          data = np.array([-2, 0, 1]).astype('float32')
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = functional.relu(data)  # [0, 0, 1]
    """

    if in_dygraph_mode():
        if inplace:
            warnings.warn(
                "Inplace on ReLU is not allowed and will be discarded in dygraph mode currently."
            )
        return core.ops.relu(input)

209 210
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'relu')
211

212
    helper = LayerHelper('relu', **locals())
213 214 215 216 217 218
    outs = input if inplace else helper.create_variable_for_type_inference(
        input.dtype)
    helper.append_op(type='relu', inputs={'X': [input]}, outputs={'Out': outs})
    return outs


219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
def sigmoid(input, inplace=False, name=None):
    """
    Sigmoid Activation.

    .. math:

        output = \frac{1}{1 + e^{-input}}
    
    Parameters:
        input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
        inplace (bool, optional): If inplace is True, the input and output are the same variable.
            Otherwise, the input and output of are different variables. Default: False. Note that if x is
            more than one OPs' input, inplace must be False.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    
    Returns:
        Output of sigmoid operator, a Tensor with shape same as input
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          import paddle.nn.functional as functional
          import numpy as np
          # In the static graph mode
          input = fluid.data(name="input", shape=[None, 4])
          output = functional.sigmoid(input)
          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
          output_data = exe.run(feed={"input": input_data},
                                fetch_list=[output])
          print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
          # In the dynamic graph mode
          with fluid.dygraph.guard():
              input = fluid.dygraph.to_variable(input_data)
              output = functional.sigmoid(input)
              print(output) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
    """

    if in_dygraph_mode():
        if inplace:
            warnings.warn(
                "Inplace on sigmoid is not allowed and will be discarded in dygraph mode currently."
            )
        return core.ops.sigmoid(input)

268
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
269 270 271 272 273 274 275 276
                             'sigmoid')
    helper = LayerHelper("sigmoid", **locals())
    outputs = helper.create_variable_for_type_inference(input.dtype)
    helper.append_op(
        type='sigmoid', inputs={'X': [input]}, outputs={'Out': outputs})
    return outputs


277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
def log_softmax(input, axis=None, dtype=None, name=None):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
                  = log(\\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})

    Parameters:
        input (Variable): The input variable. A multi-dimension Tensor with type float32, or float64.
        axis (int, optional): The index of dimension to perform softmax calculations, it should be in
            range :math:`[-1, rank-1]`, while :math:`rank` is the rank of input variable. Default: None. 
            None and -1 means the last dimension.
        dtype (np.dtype|core.VarDesc.VarType|str): The desired data type of returned tensor. If specified,
            the input tensor is casted to dtype before the operation is performed. This is useful for
            preventing data type overflows. Default: None. Supported dtype: float32 or float64
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input``.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn.functional as F
          import numpy as np

          data = np.array([[[-2.0, 3.0, -4.0, 5.0],
                            [3.0, -4.0, 5.0, -6.0],
                            [-7.0, -8.0, 8.0, 9.0]],
                           [[1.0, -2.0, -3.0, 4.0],
                            [-5.0, 6.0, 7.0, -8.0],
                            [6.0, 7.0, 8.0, 9.0]]]).astype('float32')
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = F.log_softmax(data, -1)
              # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
              #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
              #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
              #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
              #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
              #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """

    axis = -1 if axis is None else axis
    dtype = convert_np_dtype_to_dtype_(dtype) if dtype is not None else dtype

    if in_dygraph_mode():
        outs_cast = input if dtype is None \
            else core.ops.cast(input, 'in_dtype', input.dtype, 'out_dtype', dtype)
        outs_softmax = core.ops.softmax(outs_cast, 'axis', axis, 'use_cudnn',
                                        False)
        return core.ops.log(outs_softmax)

334 335 336
    if dtype is None:
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'log_softmax')
337

338
    helper = LayerHelper("log_softmax", **locals())
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    outs_cast = input
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': input},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': input.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': False})

    outs_log = helper.create_variable_for_type_inference(outs_softmax.dtype)
    helper.append_op(
        type='log', inputs={'X': outs_softmax}, outputs={'Out': outs_log})

    return outs_log