activation.py 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16 17
from ...fluid.layers import erf  #DEFINE_ALIAS
from ...fluid.layers import soft_relu  #DEFINE_ALIAS
18
from ...fluid.layers import sigmoid  #DEFINE_ALIAS
W
WangXi 已提交
19
from ...tensor.math import tanh  #DEFINE_ALIAS
20

21
__all__ = [
22 23 24
    'elu',
    'erf',
    'gelu',
25
    'hardshrink',
26
    'hardtanh',
27 28
    'hardsigmoid',
    'hardswish',
29
    'hsigmoid',
30
    'leaky_relu',
31
    'log_sigmoid',
32
    'maxout',
33
    'prelu',
34
    'relu',
35 36 37 38 39 40 41
    'relu6',
    'selu',
    'soft_relu',
    'softmax',
    'softplus',
    'softshrink',
    'softsign',
42
    'sigmoid',
43
    'swish',
W
WangXi 已提交
44
    'tanh',
45
    'tanhshrink',
46
    'thresholded_relu',
47
    'log_softmax',
48
]
49

50 51 52 53
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
54
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
55
import paddle
56

57

58 59 60 61
def elu(x, alpha=1.0, name=None):
    """
    elu activation.

62
    .. math::
63 64 65 66 67 68 69 70

        elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
71

72 73
    Returns:
        A Tensor with the same data type and shape as ``x`` .
74

75 76 77
    Examples:
        .. code-block:: python

78 79 80
            import paddle
            import paddle.nn.functional as F
            import numpy as np
81

82
            paddle.disable_static()
83

84
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
85
            out = F.elu(x, alpha=0.2)
86 87
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    """

    if in_dygraph_mode():
        return core.ops.elu(x, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


def gelu(x, approximate=False, name=None):
    """
    gelu activation.

    if approximate is True
109 110 111

    .. math::

112
        gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))
113

114
    else
115 116 117

    .. math::

118
        gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
119

120 121 122 123 124
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
125

126 127
    Returns:
        A Tensor with the same data type and shape as ``x`` .
128

129 130 131
    Examples:
        .. code-block:: python

132 133 134
            import paddle
            import paddle.nn.functional as F
            import numpy as np
135

136
            paddle.disable_static()
137

138 139 140
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
            out1 = F.gelu(x) # [-0.158655 0.345731 0.841345 1.39979]
            out2 = F.gelu(x, True) # [-0.158808 0.345714 0.841192 1.39957]
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    """

    if in_dygraph_mode():
        return core.ops.gelu(x, 'approximate', approximate)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


157 158 159 160 161 162 163
def hardshrink(x, threshold=0.5, name=None):
    """
    hard shrinkage activation

    .. math::

        hardshrink(x)=
164 165 166 167 168 169 170
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
171 172 173 174 175 176 177 178 179 180 181 182 183

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

184 185 186
            import paddle
            import paddle.nn.functional as F
            import numpy as np
187

188
            paddle.disable_static()
189

190 191
            x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
            out = F.hardshrink(x) # [-1., 0., 2.5]
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

    """
    if in_dygraph_mode():
        return core.ops.hard_shrink(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


209 210 211 212 213 214 215 216 217 218 219 220
def hardtanh(x, min=-1.0, max=1.0, name=None):
    """
    hardtanh activation

    .. math::

        hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

221
    Parameters:
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

    if in_dygraph_mode():
        return core.ops.brelu(x, 't_min', min, 't_max', max)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
def hardsigmoid(x, name=None):
    """
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &1, & & \\text{if } x \\geq 3 \\\\
            &x/6 + 1/2, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

    if in_dygraph_mode():
        return core.ops.hard_sigmoid(x, 'slope', 0.1666666666666667, 'offset',
                                     0.5)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': 0.1666666666666667,
               'offset': 0.5})
    return out


def hardswish(x, name=None):
    """
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &x, & & \\text{if } x \\geq 3 \\\\
            &\\frac{x(x+3)}{6}, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

    if in_dygraph_mode():
        return core.ops.hard_swish(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


364 365 366 367 368 369 370 371 372
def hsigmoid(input,
             label,
             weight,
             bias,
             num_classes,
             path_table=None,
             path_code=None,
             is_sparse=False):
    """
H
hong 已提交
373 374
	:alias_main: paddle.nn.functional.hsigmoid
	:alias: paddle.nn.functional.hsigmoid,paddle.nn.functional.activation.hsigmoid
S
swtkiwi 已提交
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        weight (Variable): A tensor with shape (num_classes - 1, D) if not using custom tree(path_code and path_table is None), or (num_classes, D) if using custom tree.
        bias (Variable): A tensor with shape (num_classes - 1, 1) if not using custom tree(path_code and path_table is None), or (num_classes, 1) if using custom tree.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:
        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            main = fluid.Program()
            start = fluid.Program()
            feature_size = 6
            num_classes = 8
            with fluid.unique_name.guard():
                with fluid.program_guard(main, start):
                    x = fluid.data("input", [-1, feature_size],
                                  dtype="float32")
                    label = fluid.data("labels", [-1, 1], dtype="int64")
                    w = fluid.data("weight", (num_classes -1, feature_size), dtype="float32")
                    b = fluid.data("bias", (num_classes -1, ), dtype="float32")
                    y = F.hsigmoid(x, label, w, b, num_classes)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(start)
            feed_dict = {
                "input": np.random.randn(4, feature_size).astype(np.float32),
                "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
                "weight": np.random.randn(num_classes - 1, feature_size).astype(np.float32),
                "bias": np.random.randn(num_classes - 1, ).astype(np.float32),
            }
            y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
            print(y_np.shape)

          # (4, 1)
    """

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()

    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out
484 485


486 487 488 489
def leaky_relu(x, negative_slope=0.01, name=None):
    """
    leaky_relu activation

490 491 492 493 494 495 496 497
    .. math::
        leaky\\_relu(x)=
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

Z
zhupengyang 已提交
518
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
    if in_dygraph_mode():
        return core.ops.leaky_relu(x, 'alpha', negative_slope)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
def prelu(x, weight, name=None):
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
565 566 567 568 569
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    helper = LayerHelper('prelu', **locals())
    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

588
    # NOTE(): The input of this API should be ``N,C,...`` format,
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    # which means x.shape[0] is batch_size and x.shape[0] is channel.
    mode = 'all'
    if weight.shape[0] > 1:
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
        assert weight.shape[0] == x.shape[
            1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        mode = 'channel'

    if in_dygraph_mode():
        return core.ops.prelu(x, weight, 'mode', mode)

    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode})
    return out


612
def relu(x, name=None):
613
    """
614
    relu activation.
615

616
    .. math::
617 618 619 620

        out = max(x, 0)

    Parameters:
621 622 623
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
624 625

    Returns:
626
        A Tensor with the same data type and shape as ``x`` .
627 628 629 630

    Examples:
        .. code-block:: python

631 632 633
            import paddle
            import paddle.nn.functional as F
            import numpy as np
634

635
            paddle.disable_static()
636

637 638
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
639 640 641
    """

    if in_dygraph_mode():
642
        return core.ops.relu(x)
643

644
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
645
    helper = LayerHelper('relu', **locals())
646 647 648 649 650
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


651
def log_sigmoid(x, name=None):
652
    """
653
    log_sigmoid activation.
654

655
    .. math::
656

657
        log\\_sigmoid(x) = log \\frac{1}{1 + e^{-x}}
658

659 660 661 662
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
663

664 665
    Returns:
        A Tensor with the same data type and shape as ``x`` .
666

667 668 669
    Examples:
        .. code-block:: python

670 671
            import paddle
            import paddle.nn.functional as F
672

673
            paddle.disable_static()
674

675 676
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
677 678 679 680 681 682
    """

    if in_dygraph_mode():
        return core.ops.logsigmoid(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
683 684
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
685 686 687
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
688 689


690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
def maxout(x, groups, axis=1, name=None):
    """
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

        &out_{si+j} = \\max_{k} x_{gsi + sk + j} \\\\
        &g = groups \\\\
        &s = \\frac{input.size}{num\\_channels} \\\\
        &0 \\le i < \\frac{num\\_channels}{groups} \\\\
        &0 \\le j < s \\\\
        &0 \\le k < groups

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    if in_dygraph_mode():
        return core.ops.maxout(x, 'groups', groups, 'axis', axis)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups,
               'axis': axis})
    return out


765 766 767 768 769 770
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

771
        relu6(x) = min(max(0,x), 6)
772

773
    Parameters:
774 775 776 777 778 779 780 781 782 783
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

784 785 786
            import paddle
            import paddle.nn.functional as F
            import numpy as np
787

788 789
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    """
    threshold = 6.0
    if in_dygraph_mode():
        return core.ops.relu6(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
    """
    selu activation

    .. math::

815 816 817 818 819
        selu(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
820

821
    Parameters:
822
        x (Tensor): The input Tensor with data type float32, float64.
823 824
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
825 826 827 828 829 830 831 832 833
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

834 835 836
            import paddle
            import paddle.nn.functional as F
            import numpy as np
837

838
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
839
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
840
    """
841 842 843 844 845 846 847 848
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    if in_dygraph_mode():
        return core.ops.selu(x, 'scale', scale, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


864
def softmax(x, axis=-1, dtype=None, name=None):
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    """
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

891
        softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

940 941 942 943 944 945 946 947
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
948
            to ``dtype`` before the operation is performed. This is useful for
949 950 951
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
952 953 954 955
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
956 957
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
958 959 960 961

    Examples:
        .. code-block:: python

962 963 964
            import paddle
            import paddle.nn.functional as F
            import numpy as np
965

966
            paddle.disable_static()
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
985
    """
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True if axis is -1 else False

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
1023 1024


1025 1026 1027 1028 1029 1030
def softplus(x, beta=1, threshold=20, name=None):
    """
    softplus activation

    .. math::

1031 1032
        softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1033

1034
    Parameters:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1047 1048 1049
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1050

1051 1052
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    """
    if in_dygraph_mode():
        return core.ops.softplus(x, 'beta', beta, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
    """
    softshrink activation

    .. math::

1076 1077 1078 1079 1080
        softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
1081

1082
    Parameters:
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1094 1095 1096
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1097

1098 1099
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1100
    """
1101 1102 1103 1104 1105
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    if in_dygraph_mode():
        return core.ops.softshrink(x, 'lambda', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
    """
    softsign activation

    .. math::

1127
        softsign(x) = \\frac{x}{1 + |x|}
1128

1129
    Parameters:
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1140 1141 1142
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1143

1144 1145
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    """
    if in_dygraph_mode():
        return core.ops.softsign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
def swish(x, name=None):
    """
    swish activation.

    .. math::

        swish(x) = \\frac{x}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """

    if in_dygraph_mode():
        return core.ops.swish(x, 'slop', 1.0)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': 1.0})
    return out


1199 1200 1201 1202 1203 1204
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1205
        tanhshrink(x) = x - tanh(x)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1218 1219 1220
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1221

1222 1223
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    """
    if in_dygraph_mode():
        return core.ops.tanh_shrink(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
def thresholded_relu(x, threshold=1.0, name=None):
    """
    thresholded relu activation.

    .. math::

        thresholded\\_relu(x) = \\begin{cases}
                                 x, \\text{if } x > threshold \\\\
                                 0, \\text{otherwise}
                                \\end{cases}

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

    if in_dygraph_mode():
        return core.ops.thresholded_relu(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


1282
def log_softmax(x, axis=-1, dtype=None, name=None):
1283
    """
1284 1285
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1286 1287 1288

    .. math::

1289 1290
        log\\_softmax[i, j] = log(softmax(x))
                            = log(\\frac{\exp(X[i, j])}{\\sum_j(exp(X[i, j])})
1291 1292

    Parameters:
1293 1294 1295 1296 1297 1298 1299
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1300
            to ``dtype`` before the operation is performed. This is useful for
1301 1302 1303 1304 1305
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1306

1307
    Returns:
1308 1309
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1310 1311 1312 1313

    Examples:
        .. code-block:: python

1314 1315 1316
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
            paddle.disable_static()

            x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                            [3.0, -4.0, 5.0, -6.0],
                            [-7.0, -8.0, 8.0, 9.0]],
                            [[1.0, -2.0, -3.0, 4.0],
                            [-5.0, 6.0, 7.0, -8.0],
                            [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1338 1339 1340

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1341 1342

    if in_dygraph_mode():
1343 1344 1345
        if dtype is not None:
            x = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.log_softmax(x, 'axis', axis)
1346

1347
    if dtype is None:
1348 1349 1350 1351 1352
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1353

1354
    helper = LayerHelper("log_softmax", **locals())
1355
    out_cast = x
1356
    if dtype is not None:
1357
        out_cast = helper.create_variable_for_type_inference(dtype)
1358 1359
        helper.append_op(
            type='cast',
1360 1361 1362
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1363 1364
                   'out_dtype': dtype})

1365
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1366
    helper.append_op(
1367 1368 1369 1370
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1371

1372
    return out