backward.cc 19.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
16
#include "paddle/operators/net_op.h"
D
dongzhihong 已提交
17

F
fengjiayi 已提交
18
#include <deque>
D
dongzhihong 已提交
19
#include <list>
Y
Yu Yang 已提交
20 21
#include <memory>

F
fengjiayi 已提交
22
#include "paddle/framework/block_desc.h"
23
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
24
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
25
#include "paddle/operators/recurrent_op.h"
Y
Yu Yang 已提交
26 27 28 29

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
30
static inline std::unique_ptr<OperatorBase> CreateGradOp(
31 32
    const OperatorBase& op, const std::unordered_set<std::string>& no_grad_set,
    std::unordered_map<std::string, std::string>* grad_to_var) {
Y
Yu Yang 已提交
33 34 35 36 37 38
  OpDescBind op_desc;
  op_desc.SetInputMap(op.Inputs());
  op_desc.SetOutputMap(op.Outputs());
  op_desc.SetType(op.Type());
  op_desc.SetAttrMap(op.Attrs());
  auto& info = OpInfoMap::Instance().Get(op.Type());
39
  auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var);
Y
Yu Yang 已提交
40 41
  std::vector<std::unique_ptr<OperatorBase>> grad_ops;
  grad_ops.reserve(grad_descs.size());
Y
Yu Yang 已提交
42 43 44
  std::transform(grad_descs.begin(), grad_descs.end(),
                 std::back_inserter(grad_ops),
                 [](const std::unique_ptr<OpDescBind>& grad_desc) {
Y
Yu Yang 已提交
45
                   return OpRegistry::CreateOp(*grad_desc);
Y
Yu Yang 已提交
46
                 });
Y
Yu Yang 已提交
47
  PADDLE_ENFORCE(!grad_ops.empty());
Y
Yu Yang 已提交
48 49 50 51 52 53 54
  if (grad_ops.size() == 1) {
    return std::move(grad_ops[0]);
  } else {
    auto net_op = new operators::NetOp();
    for (auto& grad_op : grad_ops) {
      net_op->AppendOp(std::move(grad_op));
    }
Y
Yu Yang 已提交
55
    net_op->CompleteAddOp();
Y
Yu Yang 已提交
56 57 58 59
    return std::unique_ptr<OperatorBase>(net_op);
  }
}

Y
Yu Yang 已提交
60
template <typename Map, typename T>
Q
qiaolongfei 已提交
61
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
62
  for (auto& name : names) {
Y
Yu Yang 已提交
63
    for (auto& n : name.second) {
64
      if (callback(n)) return;
Y
Yu Yang 已提交
65 66
    }
  }
Y
Yu Yang 已提交
67 68
}

Y
Yan Chunwei 已提交
69
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
70
static bool AllInSet(
Y
Yu Yang 已提交
71
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
72
    const std::string& suffix, const std::unordered_set<std::string>& set) {
73 74 75 76
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
77
  });
78
  return all_in_set;
Y
Yu Yang 已提交
79 80
}

Y
Yu Yang 已提交
81 82
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
83
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
84
  net_op->CompleteAddOp();
Y
Yu Yang 已提交
85
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
86 87
}

Y
Yan Chunwei 已提交
88
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
89 90 91
//
//  no_grad_names the gradient variable names without gradient calculating.
//
92 93 94
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
95
//
Y
Yan Chunwei 已提交
96 97
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
98 99
//
//  See Backward.h for details
Y
Yu Yang 已提交
100
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
101
    const OperatorBase& forwardOp,
102 103 104
    std::unordered_set<std::string>& no_grad_names,
    std::unordered_map<std::string, std::string>* grad_to_var,
    size_t& uniq_id) {
Y
Yu Yang 已提交
105 106
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
107
  //  too much time for calculation, but it is useful for simplifying logic.
108
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
109
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
110
    return NOP();
Y
Yu Yang 已提交
111 112
  }

113 114
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
115
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
116
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
117
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
118
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
119 120 121 122
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
123
    return NOP();
Y
Yu Yang 已提交
124 125
  }

Y
Yu Yang 已提交
126
  // Returned gradient network
Y
Yu Yang 已提交
127
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
128 129

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
130
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
131
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
132

133
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
134
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
135 136 137
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
138
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
139
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
140
         ++it, ++local_op_id) {
Y
Yu Yang 已提交
141
      auto& fwd = *it;
142
      auto bwd = BackwardRecursive(*fwd, no_grad_names, grad_to_var, uniq_id);
Q
qiaolongfei 已提交
143
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
144 145 146 147
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
Y
Yu Yang 已提交
148
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
149
    }
Y
Yu Yang 已提交
150
    // Get unique ID for this method.
D
dongzhihong 已提交
151
    auto uid = uniq_id++;
D
dongzhihong 已提交
152
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
153 154 155 156 157
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
158
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
159
    std::list<Pos> insert_position;
D
dongzhihong 已提交
160
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
161
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
162 163 164
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
165
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
166
      // no duplicate output
D
dongzhihong 已提交
167 168
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
169 170
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
171
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
172
        // rename each duplicate output to an alias
D
dongzhihong 已提交
173
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
174 175 176
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
177
      }
178 179 180 181 182
      // collect all the offset for each alias,
      // insert a sum operator to add all aliases to output
      insert_position.push_back(
          {dup_op.back(), OpRegistry::CreateOp("sum", {{"X", dup_outputs}},
                                               {{"Out", {name}}}, {})});
D
dongzhihong 已提交
183
    }
Y
Yu Yang 已提交
184

185
    // make sure the inserted `sum` ops follow the BFS order.
Y
Yu Yang 已提交
186
    insert_position.sort(
D
dongzhihong 已提交
187
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
188 189

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
190
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
191
    }
Y
Yu Yang 已提交
192
  } else {
193
    std::unique_ptr<OperatorBase> grad_op(
194
        CreateGradOp(forwardOp, no_grad_names, grad_to_var));
Y
Yu Yang 已提交
195

Y
Yu Yang 已提交
196 197
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
198
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
199
        // +1 for \0
200
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
201
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
202
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
203 204 205

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
D
dangqingqing 已提交
206 207
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
                                           {{"Y", {grad_input}}}, {}));
208
      }
Y
Yu Yang 已提交
209 210 211
      return false;
    });

Q
qiaolongfei 已提交
212 213
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
214
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
215
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
216 217 218
                     }
                     return false;
                   });
Y
Yu Yang 已提交
219

Y
Yan Chunwei 已提交
220
    // process recurrent gradient op as a special operator.
221
    if (forwardOp.Type() == "recurrent") {
F
Fix bug  
fengjiayi 已提交
222 223
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
      // or
Y
Yan Chunwei 已提交
224 225 226 227 228 229 230 231 232
      // this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::RecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::RecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.stepnet());
      // create stepnet's gradient op
      rnn_grad_op->set_stepnet(
233
          BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
Y
Yan Chunwei 已提交
234 235
    }

Y
Yu Yang 已提交
236 237 238
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
Y
Yu Yang 已提交
239
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
240
  }
Q
qiaolongfei 已提交
241
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
242
  net->CompleteAddOp();
Y
Yu Yang 已提交
243 244 245
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
246

Y
Yu Yang 已提交
247
// See header for comments
Y
Yu Yang 已提交
248
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
249
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
250 251
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
252
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
253

254
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
255

Y
Yu Yang 已提交
256
  for (auto& name : no_grad_vars) {
257
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
258
  }
Y
Yu Yang 已提交
259
  size_t uid = 0;
260 261
  std::unordered_map<std::string, std::string> grad_to_var;
  return BackwardRecursive(forwardOp, no_grad_names, &grad_to_var, uid);
Y
Yu Yang 已提交
262
}
Y
Yi Wang 已提交
263

F
fengjiayi 已提交
264 265 266 267 268 269 270 271 272 273 274 275
// ====================================  //

static bool AllGradInSet(const std::vector<std::string>& names,
                         const std::unordered_set<std::string>& set) {
  for (const std::string& name : names) {
    if (!set.count(GradVarName(name))) {
      return false;
    }
  }
  return true;
}

Y
Yu Yang 已提交
276
static void CreateGradVarInBlock(
277 278 279 280
    size_t grad_op_start_index,
    const std::unordered_map<std::string, std::string>& param_name_map,
    BlockDescBind* block_desc,
    std::unordered_map<std::string, GradVarInfo>* grad_var_record) {
281 282 283
  auto ops = block_desc->AllOps();
  for (size_t op_index = grad_op_start_index; op_index < ops.size();
       ++op_index) {
Q
Qiao Longfei 已提交
284
    bool need_infer_shape = false;
Y
Yu Yang 已提交
285 286 287 288 289
    ForEachVarName(ops[op_index]->Outputs(),
                   [&](const std::string& grad_var_name) {
                     if (block_desc->HasVar(grad_var_name)) {
                       return false;
                     }
Q
Qiao Longfei 已提交
290 291 292 293
                     need_infer_shape = true;
                     auto var = block_desc->Var(grad_var_name);
                     // FIXME(qiao) infer the datatype
                     var->SetDataType(framework::DataType::FP32);
Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304
                     auto it = param_name_map.find(grad_var_name);
                     if (it == param_name_map.end()) {
                       return false;
                     }
                     auto param_var_name = it->second;
                     auto& grad_record = (*grad_var_record)[param_var_name];
                     grad_record.name_ = grad_var_name;
                     grad_record.block_idx_ = block_desc->ID();
                     grad_record.op_idx_ = static_cast<int>(op_index);
                     return false; /* not break */
                   });
Q
Qiao Longfei 已提交
305 306 307
    if (need_infer_shape) {
      ops[op_index]->InferShape(*block_desc);
    }
308 309 310
  }
}

F
fengjiayi 已提交
311
std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
F
Update  
fengjiayi 已提交
312
    const std::unique_ptr<OpDescBind>& op_desc,
313 314
    std::unordered_set<std::string>* no_grad_vars,
    std::unordered_map<std::string, std::string>* grad_to_var) {
F
Update  
fengjiayi 已提交
315
  std::vector<std::unique_ptr<OpDescBind>> grad_op_descs;
316
  // All input gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
317
  const std::vector<std::string>& inputs = op_desc->InputArgumentNames();
318
  if (AllGradInSet(inputs, *no_grad_vars)) {
F
fengjiayi 已提交
319 320 321
    return grad_op_descs;  // empty vector
  }
  // All output gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
322
  const std::vector<std::string>& outputs = op_desc->OutputArgumentNames();
323
  if (AllGradInSet(outputs, *no_grad_vars)) {
324
    for (const std::string& name : inputs) {
325
      no_grad_vars->insert(GradVarName(name));
F
fengjiayi 已提交
326 327 328 329
    }
    return grad_op_descs;  // empty vector
  }

330 331
  grad_op_descs = OpInfoMap::Instance()
                      .Get(op_desc->Type())
332
                      .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var);
F
fengjiayi 已提交
333

F
Update  
fengjiayi 已提交
334 335 336
  std::list<std::unique_ptr<OpDescBind>> pending_fill_zeros_ops;
  for (auto& desc : grad_op_descs) {
    for (const std::string& in_name : desc->InputArgumentNames()) {
337
      if (no_grad_vars->count(in_name)) {
F
fengjiayi 已提交
338 339 340
        std::string prefix = in_name.substr(
            0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
        std::string new_name = prefix + kZeroVarSuffix;
F
Update  
fengjiayi 已提交
341
        desc->Rename(in_name, new_name);
F
fengjiayi 已提交
342 343 344
        std::unique_ptr<OpDescBind> fill_zeros_op(new OpDescBind(
            "fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {}));
        pending_fill_zeros_ops.push_back(std::move(fill_zeros_op));
F
fengjiayi 已提交
345 346 347
      }
    }
  }
F
fengjiayi 已提交
348

F
fengjiayi 已提交
349
  for (auto& p : pending_fill_zeros_ops) {
F
fengjiayi 已提交
350
    grad_op_descs.insert(grad_op_descs.begin(), std::move(p));
F
fengjiayi 已提交
351
  }
F
fengjiayi 已提交
352 353 354
  return grad_op_descs;
}

F
fengjiayi 已提交
355 356
std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
    ProgramDescBind& program_desc, int block_idx,
357 358
    std::unordered_set<std::string>* no_grad_vars,
    std::unordered_map<std::string, std::string>* grad_to_var) {
F
fengjiayi 已提交
359 360
  BlockDescBind* cur_block = program_desc.Block(block_idx);
  std::deque<std::unique_ptr<OpDescBind>>& op_descs = cur_block->ops_;
F
Update  
fengjiayi 已提交
361 362
  std::unordered_map<std::string, std::vector<size_t>> dup_out_ops;
  size_t grad_desc_idx = 0;
F
Update  
fengjiayi 已提交
363
  std::vector<std::unique_ptr<OpDescBind>> backward_descs;
364

F
fengjiayi 已提交
365
  for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) {
F
Update  
fengjiayi 已提交
366
    std::vector<std::unique_ptr<OpDescBind>> op_grads =
367
        MakeOpGrad(*it, no_grad_vars, grad_to_var);
F
fengjiayi 已提交
368 369 370

    if ((*it)->Type() == "recurrent") {
      PADDLE_ENFORCE_EQ(
371
          op_grads.size(), static_cast<size_t>(1),
F
fengjiayi 已提交
372
          "rnn_op's gradient process should contain only one op.");
373
      int step_block_idx = (*it)->GetBlockAttr("step_block");
374 375
      auto backward_block_op_descs = MakeBlockBackward(
          program_desc, step_block_idx, no_grad_vars, grad_to_var);
F
fengjiayi 已提交
376 377 378 379 380 381 382
      BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block);
      for (auto& ptr : backward_block_op_descs) {
        backward_block->ops_.push_back(std::move(ptr));
      }
      op_grads[0]->SetBlockAttr("step_block", *backward_block);
    }

F
Update  
fengjiayi 已提交
383
    for (const auto& desc : op_grads) {
F
fengjiayi 已提交
384
      for (const std::string& out_name : desc->OutputArgumentNames()) {
F
Update  
fengjiayi 已提交
385 386 387 388
        dup_out_ops[out_name].emplace_back(grad_desc_idx);
      }
      ++grad_desc_idx;
    }
F
fengjiayi 已提交
389 390 391
    std::transform(
        op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs),
        [](std::unique_ptr<OpDescBind>& ptr) { return std::move(ptr); });
F
Update  
fengjiayi 已提交
392 393
  }
  // Check whether some variables are written more than once
F
Update  
fengjiayi 已提交
394
  std::list<std::pair<size_t, std::unique_ptr<OpDescBind>>> pending_sum_ops;
F
Update  
fengjiayi 已提交
395 396 397 398 399 400 401
  for (const auto& dup : dup_out_ops) {
    const std::string& out_name = dup.first;
    const std::vector<size_t> dup_op = dup.second;
    if (out_name != kEmptyVarName && dup_op.size() > 1) {
      std::vector<std::string> sum_op_inputs;
      for (size_t i = 0; i < dup_op.size(); ++i) {
        std::string new_name = out_name + "@RENAME@" + std::to_string(i);
F
Update  
fengjiayi 已提交
402
        backward_descs[dup_op[i]]->Rename(out_name, new_name);
F
Update  
fengjiayi 已提交
403 404
        sum_op_inputs.emplace_back(new_name);
      }
F
fengjiayi 已提交
405 406 407
      std::unique_ptr<OpDescBind> sum_op(new OpDescBind(
          "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {}));
      pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)});
F
Update  
fengjiayi 已提交
408 409 410
    }
  }
  pending_sum_ops.sort(
F
Update  
fengjiayi 已提交
411 412 413 414
      [](const std::pair<size_t, std::unique_ptr<OpDescBind>>& a,
         const std::pair<size_t, std::unique_ptr<OpDescBind>>& b) {
        return a.first > b.first;
      });
F
Update  
fengjiayi 已提交
415
  for (auto& p : pending_sum_ops) {
F
Update  
fengjiayi 已提交
416 417
    backward_descs.insert(backward_descs.begin() + p.first + 1,
                          std::move(p.second));
F
Update  
fengjiayi 已提交
418
  }
419

F
fengjiayi 已提交
420 421 422
  return backward_descs;
}

Q
qiaolongfei 已提交
423 424 425
ParamGradInfoMap AppendBackward(
    ProgramDescBind& program_desc, const VarDescBind& target,
    const std::unordered_set<std::string>& no_grad_vars) {
F
fengjiayi 已提交
426 427 428 429 430 431
  std::unordered_set<std::string> no_grad_var_names;
  no_grad_var_names.reserve(no_grad_vars.size() + 1);
  no_grad_var_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
  for (auto& name : no_grad_vars) {
    no_grad_var_names.insert(GradVarName(name));
  }
432

F
fengjiayi 已提交
433
  const int root_block_idx = 0;
434 435 436 437
  auto root_block = program_desc.Block(root_block_idx);
  auto& all_ops = root_block->ops_;

  // insert fill one op for target
Q
Qiao Longfei 已提交
438
  // TODO(qiao) add some check to the target.
439
  std::string fill_one_op_out = GradVarName(target.Name());
Q
Qiao Longfei 已提交
440 441 442 443 444
  std::vector<int64_t> target_shape_desc = target.Shape();
  std::vector<int> target_shape;
  std::transform(target_shape_desc.begin(), target_shape_desc.end(),
                 std::back_inserter(target_shape),
                 [](int64_t dim) { return static_cast<int>(dim); });
445 446
  std::unique_ptr<OpDescBind> fill_one_op(
      new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}},
Q
Qiao Longfei 已提交
447
                     {{"shape", target_shape},
448
                      {"value", static_cast<float>(1.0)},
449
                      {"data_type", framework::DataType::FP32}}));
450 451 452
  all_ops.push_back(std::move(fill_one_op));
  size_t forward_op_num = all_ops.size();
  size_t forward_block_num = program_desc.Size();
Y
Yu Yang 已提交
453 454

  // Insert backward operators
455 456 457
  std::unordered_map<std::string, std::string> grad_to_var;
  auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx,
                                             &no_grad_var_names, &grad_to_var);
Y
Yu Yang 已提交
458

F
fengjiayi 已提交
459
  for (auto& ptr : backward_op_descs) {
460 461
    all_ops.push_back(std::move(ptr));
  }
Q
Qiao Longfei 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474
  // Create Variable

  // Create target gradient variable
  std::unordered_map<std::string, GradVarInfo> retv;

  auto var = root_block->Var(fill_one_op_out);
  // FIXME(qiao) infer the data type
  var->SetDataType(framework::DataType::FP32);
  var->SetShape(target.Shape());
  auto& target_grad = retv[target.Name()];
  target_grad.name_ = fill_one_op_out;
  target_grad.block_idx_ = root_block_idx;
  target_grad.op_idx_ = static_cast<int>(forward_op_num);
475 476

  // create grad_var for all blocks in this program
477
  CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv);
478 479
  for (size_t block_index = forward_block_num;
       block_index < program_desc.Size(); ++block_index) {
480 481
    CreateGradVarInBlock(0, grad_to_var, program_desc.Block(block_index),
                         &retv);
F
fengjiayi 已提交
482
  }
Y
Yu Yang 已提交
483
  return retv;
F
Update  
fengjiayi 已提交
484 485
}

Y
Yu Yang 已提交
486 487
}  // namespace framework
}  // namespace paddle