backward.cc 8.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

D
dongzhihong 已提交
17
#include <list>
18
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
19
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
20
#include "paddle/operators/recurrent_op.h"
Y
Yu Yang 已提交
21 22 23 24

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
25
template <typename Map, typename T>
Q
qiaolongfei 已提交
26
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
27
  for (auto& name : names) {
Y
Yu Yang 已提交
28
    for (auto& n : name.second) {
29
      if (callback(n)) return;
Y
Yu Yang 已提交
30 31
    }
  }
Y
Yu Yang 已提交
32 33
}

Y
Yan Chunwei 已提交
34
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
35
static bool AllInSet(
Y
Yu Yang 已提交
36
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
37
    const std::string& suffix, const std::unordered_set<std::string>& set) {
38 39 40 41
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
42
  });
43
  return all_in_set;
Y
Yu Yang 已提交
44 45
}

Y
Yu Yang 已提交
46
static std::shared_ptr<OperatorBase> NOP() {
Y
Yan Chunwei 已提交
47
  auto net_op = std::make_shared<operators::NetOp>();
Q
qiaolongfei 已提交
48
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
49 50 51 52
  net_op->CompleteAddOp();
  return net_op;
}

Y
Yan Chunwei 已提交
53
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
54 55 56
//
//  no_grad_names the gradient variable names without gradient calculating.
//
57 58 59
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
60
//
Y
Yan Chunwei 已提交
61 62
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
63 64 65 66 67
//
//  See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
Y
Yan Chunwei 已提交
68

Y
Yu Yang 已提交
69
std::shared_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
70 71
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
72 73
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
74
  //  too much time for calculation, but it is useful for simplifying logic.
75
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
76
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
77
    return NOP();
Y
Yu Yang 已提交
78 79
  }

80 81
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
82
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
83
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
84
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
85
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
86 87 88 89
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
90
    return NOP();
Y
Yu Yang 已提交
91 92
  }

Y
Yu Yang 已提交
93
  // Returned gradient network
Y
Yan Chunwei 已提交
94
  auto net = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
95 96

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
97
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
98
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
99

100
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
101
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
102 103 104
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
105
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
106
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
107
         ++it, ++local_op_id) {
D
dongzhihong 已提交
108
      auto fwd = *it;
Y
Yu Yang 已提交
109
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
D
dongzhihong 已提交
110
      net->AddOp(bwd);
Q
qiaolongfei 已提交
111
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
112 113 114 115
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
D
dongzhihong 已提交
116
    }
Y
Yu Yang 已提交
117
    // Get unique ID for this method.
D
dongzhihong 已提交
118
    auto uid = uniq_id++;
D
dongzhihong 已提交
119
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
120 121 122 123 124
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
125 126
    using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
    std::list<Pos> insert_position;
D
dongzhihong 已提交
127
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
128
      const std::string& name = dup_output_op.first;
D
dongzhihong 已提交
129
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
130
      // no duplicate output
D
dongzhihong 已提交
131 132
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
133 134
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
135
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
136
        // rename each duplicate output to an alias
D
dongzhihong 已提交
137
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
138 139 140
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
141
      }
Y
Yan Chunwei 已提交
142
      // collect all the offset to append `add` op for each alias
Y
Yu Yang 已提交
143
      insert_position.push_back(
Y
Yu Yang 已提交
144 145
          {dup_op.back(), OpRegistry::CreateOp("add", {{"X", {dup_outputs}}},
                                               {{"Out", {name}}}, {})});
D
dongzhihong 已提交
146
    }
Y
Yu Yang 已提交
147

Y
Yan Chunwei 已提交
148
    // make sure the inserted `add` ops follow the BFS order.
Y
Yu Yang 已提交
149
    insert_position.sort(
D
dongzhihong 已提交
150
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
151 152

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
153
      net->InsertOp(pos.first + 1, pos.second);
D
dongzhihong 已提交
154
    }
Y
Yu Yang 已提交
155
  } else {
156
    std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
Y
Yu Yang 已提交
157

Q
qiaolongfei 已提交
158 159
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net,
                                       grad_op](const std::string& grad_input) {
160
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
161
        // +1 for \0
162
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
163
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
164
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
165 166 167

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
Y
Yu Yang 已提交
168 169
        net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {{"Src", {prefix}}},
                                        {{"Dst", {grad_input}}}, {}));
170
      }
Y
Yu Yang 已提交
171 172 173
      return false;
    });

Q
qiaolongfei 已提交
174 175
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
176
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
177
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
178 179 180
                     }
                     return false;
                   });
Y
Yu Yang 已提交
181

Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    // process recurrent gradient op as a special operator.
    if (forwardOp.Type() == "recurrent_op") {
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or
      // this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::RecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::RecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.stepnet());
      // create stepnet's gradient op
      auto grad_stepnet = BackwardRecursive(stepnet_op, no_grad_names, uniq_id);
      rnn_grad_op->set_stepnet(
          std::static_pointer_cast<operators::NetOp>(grad_stepnet));
    }

Y
Yu Yang 已提交
198 199 200
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
F
fengjiayi 已提交
201
    net->AddOp(grad_op);
Y
Yu Yang 已提交
202
  }
Q
qiaolongfei 已提交
203
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
204
  net->CompleteAddOp();
Y
Yu Yang 已提交
205
  return net;
Y
Yu Yang 已提交
206
}  // namespace framework
Y
Yu Yang 已提交
207

Y
Yu Yang 已提交
208 209
// See header for comments
std::shared_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
210
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
211 212 213 214
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
  no_grad_names.reserve(no_grad_vars.size());

215
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
216

Y
Yu Yang 已提交
217
  for (auto& name : no_grad_vars) {
218
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
219
  }
Y
Yu Yang 已提交
220
  size_t uid = 0;
Y
Yu Yang 已提交
221
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
222
}
Y
Yi Wang 已提交
223

Y
Yu Yang 已提交
224 225
}  // namespace framework
}  // namespace paddle