backward.cc 10.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
16
#include "paddle/operators/net_op.h"
D
dongzhihong 已提交
17

D
dongzhihong 已提交
18
#include <list>
Y
Yu Yang 已提交
19 20
#include <memory>

21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Y
Yu Yang 已提交
24 25 26 27

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static inline std::unique_ptr<OperatorBase> CreateGradOp(
    const OperatorBase& op) {
  OpDescBind op_desc;
  op_desc.SetInputMap(op.Inputs());
  op_desc.SetOutputMap(op.Outputs());
  op_desc.SetType(op.Type());
  op_desc.SetAttrMap(op.Attrs());
  auto& info = OpInfoMap::Instance().Get(op.Type());
  auto grad_descs = info.grad_op_maker_(op_desc);
  std::vector<std::unique_ptr<OperatorBase>> grad_ops;
  grad_ops.reserve(grad_descs.size());
  std::transform(
      grad_descs.begin(), grad_descs.end(), std::back_inserter(grad_ops),
      [](OpDescBind& grad_desc) { return OpRegistry::CreateOp(&grad_desc); });
  PADDLE_ENFORCE_GT(grad_ops.size(), 0);
  if (grad_ops.size() == 1) {
    return std::move(grad_ops[0]);
  } else {
    auto net_op = new operators::NetOp();
    for (auto& grad_op : grad_ops) {
      net_op->AppendOp(std::move(grad_op));
    }
    return std::unique_ptr<OperatorBase>(net_op);
  }
}

Y
Yu Yang 已提交
54
template <typename Map, typename T>
Q
qiaolongfei 已提交
55
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
56
  for (auto& name : names) {
Y
Yu Yang 已提交
57
    for (auto& n : name.second) {
58
      if (callback(n)) return;
Y
Yu Yang 已提交
59 60
    }
  }
Y
Yu Yang 已提交
61 62
}

Y
Yan Chunwei 已提交
63
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
64
static bool AllInSet(
Y
Yu Yang 已提交
65
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
66
    const std::string& suffix, const std::unordered_set<std::string>& set) {
67 68 69 70
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
71
  });
72
  return all_in_set;
Y
Yu Yang 已提交
73 74
}

Y
Yu Yang 已提交
75 76
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
77
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
78
  net_op->CompleteAddOp();
Y
Yu Yang 已提交
79
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
80 81
}

Y
Yan Chunwei 已提交
82
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
83 84 85
//
//  no_grad_names the gradient variable names without gradient calculating.
//
86 87 88
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
89
//
Y
Yan Chunwei 已提交
90 91
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
92 93
//
//  See Backward.h for details
Y
Yu Yang 已提交
94
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
95 96
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
97 98
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
99
  //  too much time for calculation, but it is useful for simplifying logic.
100
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
101
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
102
    return NOP();
Y
Yu Yang 已提交
103 104
  }

105 106
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
107
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
108
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
109
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
110
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
111 112 113 114
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
115
    return NOP();
Y
Yu Yang 已提交
116 117
  }

Y
Yu Yang 已提交
118
  // Returned gradient network
Y
Yu Yang 已提交
119
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
120 121

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
122
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
123
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
124

125
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
126
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
127 128 129
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
130
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
131
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
132
         ++it, ++local_op_id) {
Y
Yu Yang 已提交
133
      auto& fwd = *it;
Y
Yu Yang 已提交
134
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
Q
qiaolongfei 已提交
135
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
136 137 138 139
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
Y
Yu Yang 已提交
140
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
141
    }
Y
Yu Yang 已提交
142
    // Get unique ID for this method.
D
dongzhihong 已提交
143
    auto uid = uniq_id++;
D
dongzhihong 已提交
144
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
145 146 147 148 149
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
150
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
151
    std::list<Pos> insert_position;
D
dongzhihong 已提交
152
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
153
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
154 155 156
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
157
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
158
      // no duplicate output
D
dongzhihong 已提交
159 160
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
161 162
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
163
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
164
        // rename each duplicate output to an alias
D
dongzhihong 已提交
165
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
166 167 168
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
169
      }
Y
Yan Chunwei 已提交
170
      // collect all the offset to append `add` op for each alias
D
dzhwinter 已提交
171 172 173
      //
      // one variable is shared between multiple operators.
      // insert add operator one by one, then add it to output
D
dongzhihong 已提交
174 175 176 177 178 179 180 181 182 183 184 185
      for (size_t output_idx = 0; output_idx < dup_outputs.size() - 1;
           ++output_idx) {
        auto insert_add_x = dup_outputs[output_idx];
        auto insert_add_y = dup_outputs[output_idx];
        auto insert_add_out = name + "@SHARED@" + std::to_string(output_idx);
        // first add op inserted
        if (output_idx == dup_outputs.size() - 2) {
          insert_add_out = name;
        }
        if (output_idx != 0) {
          insert_add_y = name + "@SHARED@" + std::to_string(output_idx - 1);
        }
D
dzhwinter 已提交
186 187 188
        insert_position.push_back(
            {dup_op.back(),
             OpRegistry::CreateOp(
D
dongzhihong 已提交
189
                 "sum", {{"X", {insert_add_x}}, {"X", {insert_add_y}}},
D
dongzhihong 已提交
190
                 {{"Out", {insert_add_out}}}, {})});
D
dzhwinter 已提交
191
      }
D
dongzhihong 已提交
192
    }
Y
Yu Yang 已提交
193

Y
Yan Chunwei 已提交
194
    // make sure the inserted `add` ops follow the BFS order.
Y
Yu Yang 已提交
195
    insert_position.sort(
D
dongzhihong 已提交
196
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
197 198

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
199
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
200
    }
Y
Yu Yang 已提交
201
  } else {
Y
Yu Yang 已提交
202 203
    std::unique_ptr<OperatorBase> grad_op(CreateGradOp(forwardOp));
    PADDLE_ENFORCE(grad_op != nullptr);
Y
Yu Yang 已提交
204

Y
Yu Yang 已提交
205 206
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
207
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
208
        // +1 for \0
209
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
210
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
211
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
212 213 214

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
D
dangqingqing 已提交
215 216
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
                                           {{"Y", {grad_input}}}, {}));
217
      }
Y
Yu Yang 已提交
218 219 220
      return false;
    });

Q
qiaolongfei 已提交
221 222
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
223
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
224
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
225 226 227
                     }
                     return false;
                   });
Y
Yu Yang 已提交
228

Y
Yan Chunwei 已提交
229
    // process recurrent gradient op as a special operator.
230
    if (forwardOp.Type() == "recurrent") {
Y
Yan Chunwei 已提交
231 232 233 234 235 236 237 238 239 240
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or
      // this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::RecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::RecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.stepnet());
      // create stepnet's gradient op
      rnn_grad_op->set_stepnet(
Y
Yu Yang 已提交
241
          BackwardRecursive(stepnet_op, no_grad_names, uniq_id));
Y
Yan Chunwei 已提交
242 243
    }

Y
Yu Yang 已提交
244 245 246
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
Y
Yu Yang 已提交
247
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
248
  }
Q
qiaolongfei 已提交
249
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
250
  net->CompleteAddOp();
Y
Yu Yang 已提交
251 252 253
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
254

Y
Yu Yang 已提交
255
// See header for comments
Y
Yu Yang 已提交
256
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
257
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
258 259
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
260
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
261

262
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
263

Y
Yu Yang 已提交
264
  for (auto& name : no_grad_vars) {
265
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
266
  }
Y
Yu Yang 已提交
267
  size_t uid = 0;
Y
Yu Yang 已提交
268
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
269
}
Y
Yi Wang 已提交
270

Y
Yu Yang 已提交
271 272
}  // namespace framework
}  // namespace paddle