backward.cc 6.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

D
dongzhihong 已提交
17
#include <list>
18
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
19
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

namespace paddle {
namespace framework {

static bool AllInSet(const std::vector<std::string>& names,
                     const std::string& suffix,
                     const std::unordered_set<std::string>& set) {
  for (auto& name : names) {
    if (set.find(name + suffix) == set.end()) {
      return false;
    }
  }
  return true;
}

Y
Yu Yang 已提交
35
static std::shared_ptr<OperatorBase> NOP() {
Y
Yan Chunwei 已提交
36
  auto net_op = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
37
  net_op->type_ = "@NOP@";
Y
Yu Yang 已提交
38 39 40 41
  net_op->CompleteAddOp();
  return net_op;
}

Y
Yu Yang 已提交
42 43 44 45
//  Get backward operator from a forward operator, recursively implementation.
//
//  no_grad_names the gradient variable names without gradient calculating.
//
46 47 48
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57
//
//  returns The backward operator. For simple situation, it is a simple
//  operator. For complex situation, it is a NetOp.
//
//  See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
std::shared_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
58 59
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
60 61 62
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
  //  too much time for calculation, but it is useful for simplifying logic.
Y
Yi Wang 已提交
63
  if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) {
Y
Yu Yang 已提交
64
    return NOP();
Y
Yu Yang 已提交
65 66
  }

67 68
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
69
  //  `no_grad_names` set. Return an NOP.
Y
Yi Wang 已提交
70
  if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) {
Y
Yu Yang 已提交
71
    for (auto& name : forwardOp.inputs_) {
Y
Yu Yang 已提交
72
      // Mark all input is not need
73
      no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
74
    }
Y
Yu Yang 已提交
75
    return NOP();
Y
Yu Yang 已提交
76 77
  }

Y
Yu Yang 已提交
78
  // Returned gradient network
Y
Yan Chunwei 已提交
79
  auto net = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
80 81

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
82
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
83
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
84

85 86
    // Map from output gradient variable name to operator's indices in
    // backward net. That operator generates that variable.
Y
Yu Yang 已提交
87 88 89
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yu Yang 已提交
90
    // reversely travel forwardNet
Y
Yu Yang 已提交
91
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
92
         ++it, ++local_op_id) {
D
dongzhihong 已提交
93
      auto fwd = *it;
Y
Yu Yang 已提交
94
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
D
dongzhihong 已提交
95
      net->AddOp(bwd);
Y
Yu Yang 已提交
96 97
      for (auto& out : bwd->outputs_) {
        dup_output_ops[out].emplace_back(local_op_id);
D
dongzhihong 已提交
98 99
      }
    }
Y
Yu Yang 已提交
100
    // Get unique ID for this method.
D
dongzhihong 已提交
101
    auto uid = uniq_id++;
D
dongzhihong 已提交
102
    // TODO(dzh): more comment
Y
Yu Yang 已提交
103 104
    using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
    std::list<Pos> insert_position;
D
dongzhihong 已提交
105
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
106
      const std::string& name = dup_output_op.first;
D
dongzhihong 已提交
107 108 109 110 111 112
      auto& dup_op = dup_output_op.second;
      if (dup_op.size() == 1) continue;
      std::vector<std::string> dup_outputs;

      for (size_t i = 0; i < dup_op.size(); ++i) {
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
113 114 115
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
116
      }
Y
Yu Yang 已提交
117
      insert_position.push_back(
D
dongzhihong 已提交
118 119
          {dup_op.back(),
           OpRegistry::CreateOp(
Y
Yu Yang 已提交
120
               "add", {dup_outputs}, {name},
D
dongzhihong 已提交
121
               {{"input_format",
Y
Yu Yang 已提交
122
                 std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})});
D
dongzhihong 已提交
123
    }
Y
Yu Yang 已提交
124 125

    insert_position.sort(
D
dongzhihong 已提交
126
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
127 128

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
129
      net->InsertOp(pos.first + 1, pos.second);
D
dongzhihong 已提交
130 131
    }

Y
Yu Yang 已提交
132
  } else {
133 134 135
    std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
    for (std::string& grad_input : grad_op->inputs_) {
      if (no_grad_names.count(grad_input)) {
136 137
        std::string prefix = grad_input.substr(
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char));
138
        grad_input = prefix + kZeroVarSuffix;
Y
Yu Yang 已提交
139 140 141

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
F
fengjiayi 已提交
142 143
        net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix},
                                        {grad_input}, {}));
144 145
      }
    }
Y
Yu Yang 已提交
146

F
fengjiayi 已提交
147
    for (std::string& grad_output : grad_op->outputs_) {
148
      if (no_grad_names.count(grad_output)) {
149
        grad_output = kEmptyVarName;
150 151
      }
    }
Y
Yu Yang 已提交
152 153 154 155

    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
F
fengjiayi 已提交
156
    net->AddOp(grad_op);
Y
Yu Yang 已提交
157
  }
Y
Yu Yang 已提交
158
  net->type_ = "@GENERATED_BACKWARD@";
Y
Yu Yang 已提交
159
  net->CompleteAddOp();
Y
Yu Yang 已提交
160
  return net;
Y
Yu Yang 已提交
161 162
}

Y
Yu Yang 已提交
163 164
// See header for comments
std::shared_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
165
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
166 167 168 169
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
  no_grad_names.reserve(no_grad_vars.size());

170
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
171

Y
Yu Yang 已提交
172
  for (auto& name : no_grad_vars) {
173
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
174
  }
Y
Yu Yang 已提交
175
  size_t uid = 0;
Y
Yu Yang 已提交
176
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
177
}
Y
Yi Wang 已提交
178

Y
Yu Yang 已提交
179 180
}  // namespace framework
}  // namespace paddle