creation.py 60.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22 23
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
24 25
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
28
# TODO: define functions to get create a tensor  
29
import paddle
W
wanghuancoder 已提交
30
from paddle import _C_ops
31 32
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
    This OP return fixed number of evenly spaced values within a given interval.

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if _non_static_mode():
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]})
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


149 150
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
151
    r"""
C
chentianyu03 已提交
152 153
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
154

155 156
    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.
157 158

    Args:
C
chentianyu03 已提交
159 160
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
161
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
C
chentianyu03 已提交
162 163
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
164
            except for python float number which gets dtype from ``get_default_type`` .
165 166 167
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
168 169 170
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
C
chentianyu03 已提交
171
        Tensor: A Tensor constructed from ``data`` .
172 173

    Raises:
174
        TypeError: If the data type of ``data`` is not scalar, list, tuple, np.ndarray, paddle.Tensor
175 176
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
177
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 
178 179 180 181 182 183 184 185 186 187 188

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
189
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
190
        #        [1])
191

192 193 194
        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
195
        #        [1])
196

197 198 199
        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])        
200

201 202
        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
203 204
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
205

C
chentianyu03 已提交
206
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
207
        # <class 'paddle.Tensor'>
208 209

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
210
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
C
chentianyu03 已提交
211 212
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
213
    """
214
    place = _get_paddle_place(place)
215 216
    if place is None:
        place = _current_expected_place()
217
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
218 219
                                core.CUDAPlace, core.NPUPlace, core.XPUPlace,
                                core.CustomPlace)):
220
        raise ValueError(
221
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.CustomPlace"
222 223 224
        )

    if not isinstance(data, np.ndarray):
225

226
        def _handle_dtype(data, dtype):
227 228 229 230 231
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

232 233 234 235 236 237 238 239 240
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
241 242 243 244 245 246
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
247
            data = data._copy_to(place, False)
248
            data = _handle_dtype(data, dtype)
249
            data.stop_gradient = stop_gradient
250
            return data
251
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
252
            # should't expose it to users, just for internal use.
253 254
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
255 256 257 258
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
259 260 261 262
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
263
            return data
264 265
        else:
            raise TypeError(
266
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".
267
                format(type(data)))
268 269 270 271 272 273 274 275 276 277 278 279 280 281
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
282 283

    if dtype and convert_dtype(dtype) != data.dtype:
284
        data = data.astype(convert_dtype(dtype))
285

J
Jiabin Yang 已提交
286 287 288 289 290 291 292 293
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient)
294 295 296 297 298 299 300
    else:
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient)
301 302


303
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
304
    """
S
swtkiwi 已提交
305

306 307
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
308

P
Pei Yang 已提交
309
    Args:
310 311
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
312
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
313 314
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
315 316
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
317
    Returns:
318
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
319
    
P
Pei Yang 已提交
320 321
    Examples:
        .. code-block:: python
322

P
Pei Yang 已提交
323 324
          import paddle
          import numpy as np
325 326
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
327
          output = paddle.full_like(input, 2.0)
328 329
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
330 331 332
    """

    if dtype is None:
333
        dtype = x.dtype
334
    else:
335 336 337
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

338 339 340 341
    if in_dygraph_mode():
        return _C_ops.final_state_full_like(x, fill_value, dtype, x.place)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
342
        return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
343

344
    helper = LayerHelper("full_like", **locals())
345
    check_variable_and_dtype(
346 347
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
348
        'full_like')
349 350 351 352
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
353
    out = helper.create_variable_for_type_inference(dtype=dtype)
354

P
Pei Yang 已提交
355 356
    helper.append_op(
        type='fill_any_like',
357
        inputs={'X': [x]},
358
        attrs={'value': fill_value,
359
               "dtype": dtype},
P
Pei Yang 已提交
360
        outputs={'Out': [out]})
361
    out.stop_gradient = True
P
Pei Yang 已提交
362 363 364
    return out


365
def ones(shape, dtype=None, name=None):
366
    """
S
swtkiwi 已提交
367

368 369 370
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
371
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
372
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
373 374 375
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
376
    Returns:
377
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
378 379 380 381

    Examples:
        .. code-block:: python

382 383
          import paddle 
          
384
          # default dtype for ones OP
385 386 387 388 389 390 391 392 393
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
394
          # shape is a Tensor
395
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
396 397 398
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
399
    """
400 401 402
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
403 404


405
def ones_like(x, dtype=None, name=None):
406
    """
407 408
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
409 410

    Args:
411 412
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
413
        dtype(str|np.dtype, optional): The data type of the
414 415 416 417 418 419 420
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

421
    Returns:
422 423 424 425 426
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
427
        float64, int32 or int64.
428 429 430 431

    Examples:
        .. code-block:: python

432
            import paddle
433

434
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
435 436
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
437

438 439
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
440 441


442
def zeros(shape, dtype=None, name=None):
443 444 445 446
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
447
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
448
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
449 450 451
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
452 453

    Returns:
454
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
455 456 457 458 459

    Examples:
        .. code-block:: python

          import paddle
460
          
461 462 463 464 465 466 467 468 469
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
470
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
471
          data3 = paddle.zeros(shape=shape, dtype='int32') 
472 473
          # [[0 0]
          #  [0 0]]
474
    """
475 476 477
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
478 479


480
def zeros_like(x, dtype=None, name=None):
481
    """
482 483
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
484 485

    Args:
486 487
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
488
        dtype(str|np.dtype, optional): The data type of the
489 490 491
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
492 493 494
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
495 496

    Returns:
497 498
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
499

500
    Raise:
501
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
502
        float64, int32 or int64.
503

504 505 506
    Examples:
        .. code-block:: python

507
            import paddle
508

Z
zhupengyang 已提交
509
            x = paddle.to_tensor([1, 2, 3])
510 511
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
512

513 514
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
515 516


517
def eye(num_rows, num_columns=None, dtype=None, name=None):
518
    """
519
    
520
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
521

522
    Args:
523 524
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
525
            If None, default: num_rows.
W
wangchaochaohu 已提交
526
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
527 528
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
529 530
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
531

532
    Returns:
533
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
534

535 536
    Examples:
        .. code-block:: python
537
          
538
          import paddle
539

540
          data = paddle.eye(3, dtype='int32')
541 542 543
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
544
          data = paddle.eye(2, 3, dtype='int32')
545 546
          # [[1 0 0]
          #  [0 1 0]]
547 548
    """

549 550 551
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
552
        num_columns = num_rows
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows

    if _non_static_mode():
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)

    out.stop_gradient = True
    return out
586 587


588
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
589
    """
S
swtkiwi 已提交
590

591
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
592 593
    
    Args:
594
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
595 596
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
597 598 599
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
600
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
601
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
602
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
603 604 605
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
606
    Returns:
607
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
608

W
wangchaochaohu 已提交
609 610 611
    Examples:
        .. code-block:: python

612
          import paddle
W
wangchaochaohu 已提交
613

614 615 616
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
617

618
          # attr shape is a list which contains Tensor.
619
          positive_2 = paddle.full([1], 2, "int32")
620 621
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
622

623
          # attr shape is a Tensor.
624
          shape = paddle.full([2], 2, "int32")
625 626 627
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
628
          
629
          # attr fill_value is a Tensor.
630
          val = paddle.full([1], 2.0, "float32")
631 632 633
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
634 635 636 637 638
    """

    if dtype is None:
        dtype = 'float32'

639
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
640 641


642
def arange(start=0, end=None, step=1, dtype=None, name=None):
643
    """
644
    This OP returns a 1-D Tensor with spaced values within a given interval.
645

646 647
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
648

649 650
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
651 652

    Parameters:
653 654 655 656 657 658 659 660 661 662 663 664
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
665
        dtype(str|np.dtype, optional): The data type of the
666 667 668 669 670
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
671

672 673
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
674 675
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
676

677
    Raises:
678
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
679

Z
zhupengyang 已提交
680
    Examples:
681 682
        .. code-block:: python

Z
zhupengyang 已提交
683
            import paddle
684

Z
zhupengyang 已提交
685 686
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
687

Z
zhupengyang 已提交
688 689
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
690

Z
zhupengyang 已提交
691 692 693
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
694

Z
zhupengyang 已提交
695 696 697
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
698 699 700 701 702 703 704
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

    if _in_legacy_dygraph():
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out

    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': out})
    out.stop_gradient = True
    return out
W
WuHaobo 已提交
753 754 755 756 757 758


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
759
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
760 761

    assert x is not None, 'x cannot be None in {}'.format(op_type)
762 763
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
764
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
765
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
789
def tril(x, diagonal=0, name=None):
790
    r"""
W
WuHaobo 已提交
791
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
792
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
793 794 795 796
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
797
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
798
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
799 800 801 802 803 804 805 806 807 808 809
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
810
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
811
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
812 813 814

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
815
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
816 817 818 819 820

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
821
            import paddle
W
WuHaobo 已提交
822 823 824 825 826 827

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
828

829
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
830 831
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
832 833 834 835 836
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
837
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
838 839 840 841 842
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
843
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
844 845 846 847
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

848
    """
F
From00 已提交
849 850 851 852
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, True)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
853
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
854
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
855 856 857 858

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
859
def triu(x, diagonal=0, name=None):
860
    r"""
W
WuHaobo 已提交
861
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
862
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
863 864 865 866
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
867
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
868 869 870 871 872 873 874 875 876 877 878 879
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
880
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
881
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
882 883 884

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
885
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
886 887 888 889 890

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
891
            import paddle
W
WuHaobo 已提交
892 893 894 895 896

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
897

W
WuHaobo 已提交
898 899

            # example 1, default diagonal
900
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
901
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
902 903 904 905 906
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
907
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
908 909 910 911 912
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
913
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
914 915 916 917 918
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
919 920 921 922
    if in_dygraph_mode():
        return _C_ops.final_state_tril_triu(x, diagonal, False)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
923
        op = getattr(_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
924
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
925 926

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
927 928


929
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
930
    """
931
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
932 933 934
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
935
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
936
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
937 938
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
939 940 941
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
942
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
943 944 945 946 947 948

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
949 950 951 952
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
953

Y
yaoxuefeng 已提交
954 955
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
956 957 958 959 960 961

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

962 963
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
964
    if _in_legacy_dygraph():
965
        num = len(args)
W
wanghuancoder 已提交
966
        out = _C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
967
        return out
Y
YuanRisheng 已提交
968 969
    if in_dygraph_mode():
        return _C_ops.final_state_meshgrid(list(args))
S
suytingwan 已提交
970

971
    name = kwargs.get("name", None)
S
suytingwan 已提交
972 973
    helper = LayerHelper('meshgrid', **locals())

974 975
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
976

977
    for id, input_ in enumerate(args):
S
suytingwan 已提交
978 979 980 981
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

982
    num = len(args)
S
suytingwan 已提交
983
    out = [
984
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
985 986
        for i in range(num)
    ]
987 988
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
989 990

    return out
991 992


L
Li Min 已提交
993 994
def diagflat(x, offset=0, name=None):
    """
995
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0]
          #  [1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]]
        
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([[1, 2], [3, 4]])
          y = paddle.diagflat(x)
          print(y.numpy())
          # [[1 0 0 0]
          #  [0 2 0 0]
          #  [0 0 3 0]
          #  [0 0 0 4]]

          y = paddle.diagflat(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0 0]
          #  [0 0 2 0 0]
          #  [0 0 0 3 0]
          #  [0 0 0 0 4]
          #  [0 0 0 0 0]]

          y = paddle.diagflat(x, offset=-1)
          print(y.numpy())
          # [[0 0 0 0 0]
          #  [1 0 0 0 0]
          #  [0 2 0 0 0]
          #  [0 0 3 0 0]
          #  [0 0 0 4 0]]
    """
    padding_value = 0
Z
zhiboniu 已提交
1071
    if paddle.in_dynamic_mode():
L
Li Min 已提交
1072
        if len(x.shape) == 1:
W
wanghuancoder 已提交
1073 1074
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1075
        else:
W
wanghuancoder 已提交
1076 1077 1078 1079
            y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0,
                                                   "stop_axis", -1)
            return _C_ops.diag_v2(y, "offset", offset, "padding_value",
                                  padding_value)
L
Li Min 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset,
                   'padding_value': padding_value})
    else:
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1,
                     'XShape': out1_shape},
            attrs={'start_axis': 0,
                   'stop_axis': -1})
        out1.stop_gradient = True

        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset,
                   'padding_value': padding_value})
    out2.stop_gradient = True
    return out2


1118 1119
def diag(x, offset=0, padding_value=0, name=None):
    """
1120
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
J
Jiabin Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    if in_dygraph_mode():
        return _C_ops.final_state_diag(x, offset, padding_value)
    else:
        if _in_legacy_dygraph():
            return _C_ops.diag_v2(x, "offset", offset, "padding_value",
                                  padding_value)
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
                    "The dimension of input x must be either 1 or 2, but received {}".
                    format(len(x.shape)))
1201

J
Jiabin Yang 已提交
1202
            helper = LayerHelper("diag_v2", **locals())
1203

J
Jiabin Yang 已提交
1204
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1205

J
Jiabin Yang 已提交
1206 1207 1208 1209 1210 1211
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset,
                       'padding_value': padding_value})
1212

J
Jiabin Yang 已提交
1213 1214
            out.stop_gradient = True
            return out
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1269
    if paddle.in_dynamic_mode():
1270
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
1271 1272
        out = _C_ops.empty('shape', shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

Z
zhiboniu 已提交
1337
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1338 1339
        out = _C_ops.empty('shape', x.shape, 'dtype',
                           convert_np_dtype_to_dtype_(dtype))
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1367 1368 1369 1370


def assign(x, output=None):
    """
1371

1372 1373 1374
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
1375
        x (Tensor|np.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
1376 1377 1378
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    input = x
    helper = LayerHelper('assign', **locals())
    check_type(input, 'input', (Variable, np.ndarray, list, tuple, float, int,
                                bool), 'assign')
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
        if _non_static_mode():
            if output is None:
                if _in_legacy_dygraph():
                    output = core.VarBase()
                else:
                    output = core.eager.Tensor()
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
    elif isinstance(input, np.ndarray):
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
                value_name: values
            })

    if is_inplace and _non_static_mode():
        output._bump_inplace_version()

    return output
1484 1485


1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
def clone(x, name=None):
    """
    Returns a copy of input Tensor. It will always have a Tensor copy. 
    
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns: A Tensor copied from ``input`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
#NOTE(zhiqiu): not public 
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs)
    return output
F
Feiyu Chan 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
Z
zhiboniu 已提交
1603
    if paddle.in_dynamic_mode():
F
Feiyu Chan 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        return paddle._C_ops.complex(real, imag)

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out