creation.py 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26 27
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
28
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
29

30
# TODO: define functions to get create a tensor  
31 32 33
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
34
from ..fluid.layers import linspace  #DEFINE_ALIAS
35
import paddle
36

W
wangchaochaohu 已提交
37
__all__ = [
38
    'to_tensor',
39 40 41 42
    'crop_tensor',
    'diag',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
43
    'linspace',
44 45 46 47
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
48
    'arange',
49
    'eye',
W
wangchaochaohu 已提交
50
    'full',
P
Pei Yang 已提交
51
    'full_like',
W
WuHaobo 已提交
52 53
    'triu',
    'tril',
54
    'meshgrid'
W
wangchaochaohu 已提交
55 56 57
]


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
    and returned. Similarly, if the data is an numpy\.ndarray of with the same ``dtype`` 
    and the current place is cpu, no copy will be performed.

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
        dtype(str, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
            'complex64' , 'complex128' only for ComplexTensor.
            Default: None, infers data type from ``data`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor or ComplexTensor constructed from ``data``.

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
        paddle.enable_imperative()
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), , dtype='complex64')
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))

    if dtype:
        dtype = convert_dtype(dtype)
        if dtype != data.dtype:
            data = data.astype(dtype)

    if not np.iscomplexobj(data):
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=True,
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
            zero_copy=True,
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
            zero_copy=True,
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


222
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
223
    """
S
swtkiwi 已提交
224

225 226
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
227

P
Pei Yang 已提交
228
    Args:
229 230
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
231
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
232 233
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
234 235
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
236
    Returns:
237
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
238
    
239
    Raises:
240 241
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
242
    
P
Pei Yang 已提交
243 244
    Examples:
        .. code-block:: python
245

P
Pei Yang 已提交
246 247
          import paddle
          import numpy as np
248
          
249
          paddle.disable_static()  # Now we are in imperative mode 
250
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
251
          output = paddle.full_like(input, 2.0)
252 253
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
254 255 256
    """

    if dtype is None:
257
        dtype = x.dtype
258
    else:
259 260 261 262 263
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
264

265
    helper = LayerHelper("full_like", **locals())
266 267 268
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
269 270
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
271
                'full_like/zeros_like/ones_like')
272
    out = helper.create_variable_for_type_inference(dtype=dtype)
273

P
Pei Yang 已提交
274 275
    helper.append_op(
        type='fill_any_like',
276
        inputs={'X': [x]},
277
        attrs={'value': fill_value,
278
               "dtype": dtype},
P
Pei Yang 已提交
279
        outputs={'Out': [out]})
280
    out.stop_gradient = True
P
Pei Yang 已提交
281 282 283
    return out


284
def ones(shape, dtype=None, name=None):
285
    """
S
swtkiwi 已提交
286

287 288 289
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
290
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
291
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
292 293 294
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
295
    Returns:
296
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
297

298
    Raises:
299
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
300 301
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
302
    
303 304 305
    Examples:
        .. code-block:: python

306
          import paddle 
307
          paddle.disable_static()
308
          
309
          # default dtype for ones OP
310 311 312 313 314 315 316 317 318
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
319
          # shape is a Tensor
320 321 322 323
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
324
    """
325 326 327
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
328 329


330
def ones_like(x, dtype=None, name=None):
331
    """
332
	:alias_main: paddle.ones_like
333
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
334

335 336
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
337 338

    Args:
339 340 341 342 343 344 345 346 347 348
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

349
    Returns:
350 351 352 353 354 355
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
356 357 358 359

    Examples:
        .. code-block:: python

360 361
            import paddle
            import numpy as np
362

363
            paddle.disable_static()
364

365 366 367
            x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
368

369 370
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
371 372


373
def zeros(shape, dtype=None, name=None):
374 375 376 377
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
378
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
379
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
380 381 382
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
383 384

    Returns:
385
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
386

387
    Raises:
388
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
389 390 391
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
    
392 393 394 395
    Examples:
        .. code-block:: python

          import paddle
396
          
397
          paddle.disable_static()  # Now we are in imperative mode
398 399 400 401 402 403 404 405 406 407
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
408
          data3 = paddle.zeros(shape=shape, dtype='int32') 
409 410
          # [[0 0]
          #  [0 0]]
411
    """
412 413 414
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
415 416


417
def zeros_like(x, dtype=None, name=None):
418
    """
419
	:alias_main: paddle.zeros_like
420
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
421

422 423
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
424 425

    Args:
426 427 428 429 430 431
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
432 433 434
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
435 436

    Returns:
437 438
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
439

440
    Raise:
441 442
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
443

444 445 446
    Examples:
        .. code-block:: python

447 448
            import paddle
            import numpy as np
449

450
            paddle.disable_static()
451

452 453 454
            x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
455

456 457
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
458 459


460
def eye(num_rows, num_columns=None, dtype=None, name=None):
461
    """
462
    
463
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
464

465
    Args:
466 467
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
468
            If None, default: num_rows.
W
wangchaochaohu 已提交
469
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
470 471
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
472 473
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
474

475
    Returns:
476
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
477 478
    
    Raises:
479 480
        TypeError: The ``dtype`` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The ``num_columns`` must be non-negative int.
481

482 483
    Examples:
        .. code-block:: python
484
          
485
          import paddle
486

487
          paddle.disable_static()  # Now we are in imperative mode
488
          data = paddle.eye(3, dtype='int32')
489 490 491
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
492
          data = paddle.eye(2, 3, dtype='int32')
493 494
          # [[1 0 0]
          #  [0 1 0]]
495 496
    """

497 498 499
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
500
        num_columns = num_rows
501 502 503 504 505
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
506 507


508
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
509
    """
S
swtkiwi 已提交
510

511
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
512 513
    
    Args:
514
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
515 516
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
517 518 519
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
520
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
521
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
522
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
523 524 525
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
526
    Returns:
527
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
528 529

    Raises:
530 531 532
        TypeError: The ``dtype`` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The ``shape`` must be one of Tensor, list and tuple. The data type of ``shape`` must
            be int32 or int64 when the it's a Tensor
533
    
W
wangchaochaohu 已提交
534 535 536
    Examples:
        .. code-block:: python

537
          import paddle
W
wangchaochaohu 已提交
538

539
          paddle.disable_static()  # Now we are in imperative mode
540 541 542
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
543

544
          # attr shape is a list which contains Tensor.
545
          positive_2 = paddle.fill_constant([1], "int32", 2)
546 547
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
548

549
          # attr shape is a Tensor.
550 551 552 553
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
554
          
555
          # attr fill_value is a Tensor.
556 557 558 559
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
560 561 562 563 564
    """

    if dtype is None:
        dtype = 'float32'

565
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
566 567


568
def arange(start=0, end=None, step=1, dtype=None, name=None):
569
    """
570
	:alias_main: paddle.arange
571
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
572

573
    This OP returns a 1-D Tensor with spaced values within a given interval.
574

575 576
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
577

578 579
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
580 581

    Parameters:
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
600

601 602 603 604
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
605

606
    Raises:
607
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
608

609 610 611 612
    examples:

        .. code-block:: python

613 614
        import paddle
        import numpy as np
615

616
        paddle.disable_static()
617

618 619
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
620

621 622
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
623

624 625 626
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
627

628
        start_var = paddle.to_tensor(np.array([3]))
629 630 631 632 633 634 635 636 637
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
638

639
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
640 641 642 643 644 645


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
646
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
647 648 649 650 651

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
652
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
676
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
677
    """
678 679
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
680

W
WuHaobo 已提交
681
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
682
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
683 684 685 686
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
687
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
688 689 690 691 692 693 694 695 696 697 698 699
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
700 701
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
702 703 704

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
705
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
706 707 708 709 710

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
711
            import paddle
W
WuHaobo 已提交
712 713 714 715 716 717

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

718
            paddle.disable_static()
Y
yaoxuefeng 已提交
719

720
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
721 722
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
723 724 725 726 727
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
728
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
729 730 731 732 733
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
734
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
735 736 737 738
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

739 740 741
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
742
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
743 744 745 746

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
747
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
748
    """
749 750
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
751

W
WuHaobo 已提交
752
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
753
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
754 755 756 757
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
758
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
759 760 761 762 763 764 765 766 767 768 769 770
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
771 772
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
773 774 775

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
776
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
777 778 779 780 781

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
782
            import paddle
W
WuHaobo 已提交
783 784 785 786 787

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
788

789
            paddle.disable_static()
W
WuHaobo 已提交
790 791

            # example 1, default diagonal
792
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
793
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
794 795 796 797 798
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
799
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
800 801 802 803 804
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
805
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
806 807 808 809 810
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
811 812
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
813
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
814 815

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
816 817


818
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
819
    """
820 821
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
822

823
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
824 825 826
    vector, and creates N-dimensional grids.
    
    Args:
827
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
828
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
829 830
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
850
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
865
          
866
          paddle.disable_static()
S
suytingwan 已提交
867 868 869

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
870 871
          tensor_3 = paddle.to_tensor(input_3)
          tensor_4 = paddle.to_tensor(input_4)
872
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
873 874 875 876 877 878

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

879 880
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
881
    if in_dygraph_mode():
882 883
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
884 885
        return out

886
    name = kwargs.get("name", None)
S
suytingwan 已提交
887 888
    helper = LayerHelper('meshgrid', **locals())

889 890
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
891

892
    for id, input_ in enumerate(args):
S
suytingwan 已提交
893 894 895 896
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

897
    num = len(args)
S
suytingwan 已提交
898
    out = [
899
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
900 901
        for i in range(num)
    ]
902 903
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
904 905

    return out