creation.py 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
L
Li Fuchen 已提交
16
from ..fluid.framework import Variable
P
Pei Yang 已提交
17 18 19 20 21 22
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
23
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
24

25
# TODO: define functions to get create a tensor  
26 27 28 29
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import diag  #DEFINE_ALIAS
from ..fluid.layers import eye  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
30
from ..fluid.layers import create_tensor  #DEFINE_ALIAS
31
from ..fluid.layers import linspace  #DEFINE_ALIAS
32

W
wangchaochaohu 已提交
33
__all__ = [
34
    'create_tensor',
35 36 37 38 39 40 41
    #       'create_lod_tensor',
    #       'create_random_int_lodtensor',
    'crop_tensor',
    'diag',
    'eye',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
42
    'linspace',
43 44 45 46
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
47
    'arange',
48
    'eye',
W
wangchaochaohu 已提交
49
    'full',
P
Pei Yang 已提交
50
    'full_like',
W
WuHaobo 已提交
51 52
    'triu',
    'tril',
53
    'meshgrid'
W
wangchaochaohu 已提交
54 55 56
]


57
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
58
    """
59 60
	:alias_main: paddle.full_like
	:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
S
swtkiwi 已提交
61

P
Pei Yang 已提交
62 63 64
    **full_like**
    This function creates a tensor filled with `fill_value` which has identical shape and dtype 
    with `input`.
65

P
Pei Yang 已提交
66
    Args:
67
        x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
68
        fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
69 70 71
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
72 73
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
74
    Returns:
75 76
        out(Variable): The Tensor variable storing the output.
    
P
Pei Yang 已提交
77 78
    Examples:
        .. code-block:: python
79

P
Pei Yang 已提交
80 81
          import paddle
          import numpy as np
82 83 84
          
          paddle.enable_imperative()  # Now we are in imperative mode 
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
85
          output = paddle.full_like(input, 2.0)
86
          #output result : [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
P
Pei Yang 已提交
87 88 89
    """

    if dtype is None:
90
        dtype = x.dtype
91
    else:
92 93 94 95 96
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
97

98 99 100 101 102
    helper = LayerHelper("full_like", **locals())
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'full_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)
103

P
Pei Yang 已提交
104 105
    helper.append_op(
        type='fill_any_like',
106
        inputs={'X': [x]},
107
        attrs={'value': fill_value,
108
               "dtype": dtype},
P
Pei Yang 已提交
109 110 111 112 113
        outputs={'Out': [out]})

    return out


114 115
def ones(shape, dtype=None, out=None, device=None):
    """
116 117
	:alias_main: paddle.ones
	:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
S
swtkiwi 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
        shape(tuple|list): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is False.

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.

    Examples:
        .. code-block:: python

          import paddle
          data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]]
140
          data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 1.]]
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    """
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)
    return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)


def ones_like(input, dtype=None, device=None, name=None):
    """
158 159
	:alias_main: paddle.ones_like
	:alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like
S
swtkiwi 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    This function creates a ones tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  
    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

183
          x = fluid.data(name='x', dtype='float32', shape=[3])
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
          data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 1.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(
            dtype, 'create data type',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


226
def zeros(shape, dtype=None, name=None):
227
    """
228 229
	:alias_main: paddle.zeros
	:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
S
swtkiwi 已提交
230

231 232 233 234
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
        shape(tuple|list): Shape of output tensor.
235 236 237 238
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
239 240 241 242 243 244 245 246

    Returns:
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.

    Examples:
        .. code-block:: python

          import paddle
247 248
          
          paddle.enable_imperative()  # Now we are in imperative mode
249
          data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
250
          data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
251
    """
252 253 254
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
255 256 257 258


def zeros_like(input, dtype=None, device=None, name=None):
    """
259 260
	:alias_main: paddle.zeros_like
	:alias: paddle.zeros_like,paddle.tensor.zeros_like,paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    This function creates a zeros tensor which has identical shape and dtype 
    with `input`.

    Args:
        input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be 
            bool, float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. 
            The default value is None, the dtype is the same as input.
        device(str, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default value is None.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  

    Returns:
        out(Variable): The tensor variable storing the output.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid

285
          x = fluid.data(name='x', dtype='float32', shape=[3])
286
          data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
287
          data1 = paddle.ones_like(input=x, device="gpu") #data1=[1.0, 1.0. 1.0]
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    """

    helper = LayerHelper("zeros_like", **locals())

    attrs = {"value": 0.0}
    var_dtype = None
    if dtype is not None:
        check_dtype(dtype, 'create data type',
                    ['bool', 'float32', 'float64', 'int32', 'int64'],
                    'zeros_like')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = input.dtype

    out = helper.create_variable_for_type_inference(dtype=var_dtype)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in zeros_op must be cpu or gpu, but received %s."
                % (device))
        with fluid.device_guard(device):
            helper.append_op(
                type='fill_any_like',
                inputs={'X': [input]},
                attrs=attrs,
                outputs={'Out': [out]})
            return out
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [input]},
        attrs=attrs,
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


327 328 329 330 331 332 333 334
def eye(num_rows,
        num_columns=None,
        out=None,
        dtype='float32',
        stop_gradient=True,
        name=None):
    """
    **eye**
335 336
    This function constructs an identity tensor.

337 338 339 340 341 342 343 344 345 346 347 348
    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int, optional): the number of columns in each batch tensor.
                          If None, default: num_rows.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(string, optional): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
        stop_gradient(bool, optional): Whether stop calculating gradients. Default:True.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
349

350 351
    Returns:
        Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    Examples:
        .. code-block:: python
          import paddle
          data = paddle.eye(3, dtype='int32')
          # [[1, 0, 0]
          #  [0, 1, 0]
          #  [0, 0, 1]]
          data = paddle.eye(2, 3, dtype='int32')
          # [[1, 0, 0]
          #  [0, 1, 0]]
    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = stop_gradient
    return out


390
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
391
    """
392 393
	:alias_main: paddle.full
	:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
S
swtkiwi 已提交
394

395
    This Op return a Tensor with the `fill_value` which size is same as `shape`
W
wangchaochaohu 已提交
396 397 398 399 400 401
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
402 403
        fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
            used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
404 405 406 407 408 409
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
410 411 412 413 414 415 416
    Returns:
        Variable: Tensor which is created according to shape and dtype.

    Raises:
        TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The `shape` must be one of Variable, list tuple.
    
W
wangchaochaohu 已提交
417 418 419
    Examples:
        .. code-block:: python

420
          import paddle
W
wangchaochaohu 已提交
421

422
          paddle.enable_imperative()  # Now we are in imperative mode
423
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
W
wangchaochaohu 已提交
424 425

          # attr shape is a list which contains Variable Tensor.
426
          positive_2 = paddle.fill_constant([1], "int32", 2)
427
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]
W
wangchaochaohu 已提交
428 429

          # attr shape is an Variable Tensor.
430
          shape = paddle.fill_constant([2], "int32", 2) # shape=[2,2]
431 432 433
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
          
          # attr value is an Variable Tensor.
434
          val = paddle.fill_constant([1], "float32", 2.0) # val=[2.0]
435
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
W
wangchaochaohu 已提交
436 437 438 439 440 441 442
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

443
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
444 445 446 447


def arange(start, end, step=1, dtype=None, name=None):
    """
448 449
	:alias_main: paddle.arange
	:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
S
swtkiwi 已提交
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.

    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable

    examples:

        .. code-block:: python

             import paddle
             # expected out put: [0, 2, 4, 6, 8]
             data = paddle.arange(0, 10, 2, 'int32')
W
wangchaochaohu 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
         #dygraph mode
             import paddle
             import paddle.fluid as fluid
             with fluid.dygraph.guard():
                 x = paddle.arange(0, 6, 2) 
                 # x: [0, 2, 4]
                 # x dtype: float32
             
    """
    helper = LayerHelper("range", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)

    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)

    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    out.stop_gradient = True
W
wangchaochaohu 已提交
515
    return out
W
WuHaobo 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
    x = helper.kwargs.get('input', None)

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
        raise ValueError("input shape in {} must be at least 2-D".format(
            op_type))
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


def tril(input, diagonal=0, name=None):
    """
555 556
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
557

W
WuHaobo 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
    of matrices :attr:`input`, the other elements of the result tensor are set 
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.tensor as tensor
            import paddle.fluid as fluid

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            tril = tensor.tril(x)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
            tril = tensor.tril(x, diagonal=2)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
            tril = tensor.tril(x, diagonal=-1)
            tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[tril], return_numpy=True)
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

622 623 624 625
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
626 627 628 629 630 631

    return _tril_triu_op(LayerHelper('tril', **locals()))


def triu(input, diagonal=0, name=None):
    """
632 633
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
634

W
WuHaobo 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
    :attr:`input`, the other elements of the result tensor are set to 0.
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
        input (Variable): The input variable which is a Tensor.
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
        it's data type is the same as input's Tensor.

    Raises:
        TypeError: diagonal is not a int type.
        ValueError: dimension of :attr:`input` is less than 2.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            import paddle.tensor as tensor

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
            x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
            exe = fluid.Executor(fluid.CPUPlace())

            # example 1, default diagonal
            triu = tensor.triu(x)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
            triu = tensor.triu(x, diagonal=2)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
            triu = tensor.triu(x, diagonal=-1)
            triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
                fetch_list=[triu], return_numpy=True)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
700 701 702
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
        return op(input, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
703 704

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
705 706 707 708


def meshgrid(input, name=None):
    """
709 710
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
711

S
suytingwan 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    This op takes a list of N tensors as input, each of which is 1-dimensional 
    vector, and creates N-dimensional grids.
    
    Args:
        input(Variable) : tensors (list of tensor): the shapes of input k tensors are (N1,), 
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
          grid_x, grid_y = paddle.tensor.meshgrid([x, y])
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
          with fluid.dygraph.guard():
              tensor_3 = fluid.dygraph.to_variable(input_3)
              tensor_4 = fluid.dygraph.to_variable(input_4)
              grid_x, grid_y = paddle.tensor.meshgrid([tensor_3, tensor_4])

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

    if in_dygraph_mode():
        num = len(input)
        out = core.ops.meshgrid(input, num)
        return out

    helper = LayerHelper('meshgrid', **locals())

    if not isinstance(input, list):
        raise TypeError("The type of input in meshgrid should be list.")

    for id, input_ in enumerate(input):
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

    num = len(input)
    out = [
        helper.create_variable_for_type_inference(dtype=input[i].dtype)
        for i in range(num)
    ]
    helper.append_op(type='meshgrid', inputs={'X': input}, outputs={'Out': out})

    return out