creation.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
16

17
# TODO: define functions to get create a tensor  
W
wangchaochaohu 已提交
18 19 20 21 22 23 24 25 26

__all__ = [
    'create_tensor',
    #            'create_lod_tensor', 
    #            'create_random_int_lodtensor',
    #            'crop_tensor', 
    #            'diag', 'eye', 
    #            'fill_constant', 
    #            'get_tensor_from_selected_rows', 
27
    'linspace',
W
wangchaochaohu 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    #            'ones', 
    #            'ones_like', 
    #            'range', 
    #            'zeros', 
    #            'zeros_like', 
    #            'arrange',
    #            'eye',
    'full',
    #            'full_like',
    #            'triu',
    #            'tril',
    #            'meshgrid'
]


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def linspace(start, stop, num, dtype, out=None, device=None, name=None):
    """
    This OP return fixed number of evenly spaced values within a given interval.
    
    **NOTICE**: The output of this OP has no gradient.

    Args:
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result. Default: None.
        device (string, optional): Which device to run the operator. The :attr:`device` must be
            None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in 
            the paddle program. Default: None.
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.

    Returns:
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, dtype='float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, dtype='float32') # [0.0]

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=start.dtype)
    else:
        check_dtype(
            out.dtype, out.name,
            convert_dtype(start.dtype), 'linspace',
            "The out data type '%s' in linspace must be the same with '%s' seted by parameter 'dtype'."
            % (out.dtype, dtype))
        if name:
            warning.warn(
                "The output Variable name of the paddle.tensor.linspace operation can only be given by parameter out or name.\
                When parameter out and name are set at the same time, out has a higher priority than name. \
                Finally, the output Variable name is same as the out name %s." %
                out.name,
                category=UserWarning,
                stacklevel=2)

    if device is not None:
        if device not in ['cpu', 'gpu']:
            raise ValueError(
                "The value of 'device' in linspace operation must be cpu or gpu, but received %s."
                % (device))
        else:
            with device_guard(device):
                helper.append_op(
                    type='linspace',
                    inputs={'Start': start,
                            'Stop': stop,
                            'Num': num},
                    outputs={'Out': [out]})
    else:
        helper.append_op(
            type='linspace',
            inputs={'Start': start,
                    'Stop': stop,
                    'Num': num},
            outputs={'Out': [out]})

    return out


W
wangchaochaohu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def full(shape,
         fill_value,
         out=None,
         dtype=None,
         device=None,
         stop_gradient=True,
         name=None):
    """
    This function return a Tensor with the `fill_value` which size is same as `shape`
    
    Args:
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
        value(float): The constant value used to initialize the Tensor to be created.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created tensor is `float32`
        device(str, optional): This parameter specifies that the Tensor is created 
            on the GPU or CPU.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
            default value is True.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
    Examples:
        .. code-block:: python

          import paddle.tensor as tensor
          import paddle.fluid as fluid

          data1 = tensor.full(shape=[2,1], full_value=0, dtype='int64') # data1=[[0],[0]]
          data2 = tensor.full(shape=[2,1], full_value=5, dtype='int64', device='gpu') # data2=[[5],[5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = tensor.full(shape=[1, positive_2], dtype='float32', full_value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = tensor.full(shape=shape, dtype='bool', full_value=True) # data4=[[True,True],[True,True]]
    """

    helper = LayerHelper("full", **locals())

    if dtype is None:
        dtype = 'float32'

    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'full')
    check_type(shape, 'shape', (Variable, list, tuple), 'full')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)

    out.stop_gradient = stop_gradient

    with device_guard(device):
        out = fill_constant(shape=shape, dtype=dtype, value=fill_value, out=out)

    return out