creation.py 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
27
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
28

29
# TODO: define functions to get create a tensor  
30
from ..fluid.layers import linspace  #DEFINE_ALIAS
31
import paddle
32

W
wangchaochaohu 已提交
33
__all__ = [
34
    'to_tensor',
35 36
    'diag',
    #       'get_tensor_from_selected_rows',
37
    'linspace',
38 39 40 41
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
42
    'arange',
43
    'eye',
W
wangchaochaohu 已提交
44
    'full',
P
Pei Yang 已提交
45
    'full_like',
46
    'empty',
47
    'empty_like',
W
WuHaobo 已提交
48 49
    'triu',
    'tril',
50 51
    'meshgrid',
    'assign',
W
wangchaochaohu 已提交
52 53 54
]


55 56
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
57
    r"""
58 59
    Constructs a ``paddle.Tensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.
60 61 62

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
63
    and returned. 
64 65

    Args:
66 67
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
68
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
69 70
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
71
            except for python float number which gets dtype from ``get_default_type`` .
72 73 74 75 76
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
77
        Tensor: A Tensor constructed from ``data`` .
78 79

    Raises:
80
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor
81 82
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
83
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
84 85 86 87 88 89 90 91 92 93 94

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
95 96
        # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #        [1])
97 98 99

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
100 101
        # Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,
        #        [1])
102 103

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
104 105
        # Tensor(shape=[1], dtype=float32, place=CUDAPinnedPlace, stop_gradient=True,
        #        [1])
106 107

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
108 109 110
        # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
111

112 113
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.VarBase'>
114 115

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
116 117 118
        # Tensor(shape=[2, 2], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
119 120 121 122
    """

    if place is None:
        place = _current_expected_place()
123 124
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
                                core.CUDAPlace)):
125
        raise ValueError(
126
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        else:
            raise TypeError(
155
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor".
156
                format(type(data)))
157 158 159 160 161 162 163 164 165 166 167 168
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
169

170 171 172 173 174 175
    return paddle.Tensor(
        value=data,
        place=place,
        persistable=False,
        zero_copy=False,
        stop_gradient=stop_gradient)
176 177


178
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
179
    """
S
swtkiwi 已提交
180

181 182
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
183

P
Pei Yang 已提交
184
    Args:
185 186
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
187
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
188 189
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
190 191
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
192
    Returns:
193
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
194
    
P
Pei Yang 已提交
195 196
    Examples:
        .. code-block:: python
197

P
Pei Yang 已提交
198 199
          import paddle
          import numpy as np
200 201
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
202
          output = paddle.full_like(input, 2.0)
203 204
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
205 206 207
    """

    if dtype is None:
208
        dtype = x.dtype
209
    else:
210 211 212 213 214
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
215

216
    helper = LayerHelper("full_like", **locals())
217 218 219
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
220 221
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
222
                'full_like/zeros_like/ones_like')
223
    out = helper.create_variable_for_type_inference(dtype=dtype)
224

P
Pei Yang 已提交
225 226
    helper.append_op(
        type='fill_any_like',
227
        inputs={'X': [x]},
228
        attrs={'value': fill_value,
229
               "dtype": dtype},
P
Pei Yang 已提交
230
        outputs={'Out': [out]})
231
    out.stop_gradient = True
P
Pei Yang 已提交
232 233 234
    return out


235
def ones(shape, dtype=None, name=None):
236
    """
S
swtkiwi 已提交
237

238 239 240
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
241
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
242
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
243 244 245
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
246
    Returns:
247
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
248 249 250 251

    Examples:
        .. code-block:: python

252 253
          import paddle 
          
254
          # default dtype for ones OP
255 256 257 258 259 260 261 262 263
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
264
          # shape is a Tensor
265
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
266 267 268
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
269
    """
270 271 272
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
273 274


275
def ones_like(x, dtype=None, name=None):
276
    """
277 278
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
279 280

    Args:
281 282 283 284 285 286 287 288 289 290
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

291
    Returns:
292 293 294 295 296
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
297
        float64, int32 or int64.
298 299 300 301

    Examples:
        .. code-block:: python

302
            import paddle
303

304
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
305 306
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
307

308 309
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
310 311


312
def zeros(shape, dtype=None, name=None):
313 314 315 316
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
317
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
318
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
319 320 321
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
322 323

    Returns:
324
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
325 326 327 328 329

    Examples:
        .. code-block:: python

          import paddle
330
          
331 332 333 334 335 336 337 338 339
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
340
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
341
          data3 = paddle.zeros(shape=shape, dtype='int32') 
342 343
          # [[0 0]
          #  [0 0]]
344
    """
345 346 347
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
348 349


350
def zeros_like(x, dtype=None, name=None):
351
    """
352 353
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
354 355

    Args:
356 357 358 359 360 361
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
362 363 364
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
365 366

    Returns:
367 368
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
369

370
    Raise:
371
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
Z
zhupengyang 已提交
372
        float64, int32 or int64.
373

374 375 376
    Examples:
        .. code-block:: python

377
            import paddle
378

Z
zhupengyang 已提交
379
            x = paddle.to_tensor([1, 2, 3])
380 381
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
382

383 384
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
385 386


387
def eye(num_rows, num_columns=None, dtype=None, name=None):
388
    """
389
    
390
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
391

392
    Args:
393 394
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
395
            If None, default: num_rows.
W
wangchaochaohu 已提交
396
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
397 398
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
399 400
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
401

402
    Returns:
403
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
404

405 406
    Examples:
        .. code-block:: python
407
          
408
          import paddle
409

410
          data = paddle.eye(3, dtype='int32')
411 412 413
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
414
          data = paddle.eye(2, 3, dtype='int32')
415 416
          # [[1 0 0]
          #  [0 1 0]]
417 418
    """

419 420 421
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
422
        num_columns = num_rows
423 424 425 426 427
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
428 429


430
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
431
    """
S
swtkiwi 已提交
432

433
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
434 435
    
    Args:
436
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
437 438
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
439 440 441
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
442
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
443
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
444
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
445 446 447
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
448
    Returns:
449
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
450

W
wangchaochaohu 已提交
451 452 453
    Examples:
        .. code-block:: python

454
          import paddle
W
wangchaochaohu 已提交
455

456 457 458
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
459

460
          # attr shape is a list which contains Tensor.
461
          positive_2 = paddle.full([1], 2, "int32")
462 463
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
464

465
          # attr shape is a Tensor.
466
          shape = paddle.full([2], 2, "int32")
467 468 469
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
470
          
471
          # attr fill_value is a Tensor.
472
          val = paddle.full([1], 2.0, "float32")
473 474 475
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
476 477 478 479 480
    """

    if dtype is None:
        dtype = 'float32'

481
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
482 483


484
def arange(start=0, end=None, step=1, dtype=None, name=None):
485
    """
486
    This OP returns a 1-D Tensor with spaced values within a given interval.
487

488 489
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
490

491 492
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
493 494

    Parameters:
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
513

514 515
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
516 517
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
518

519
    Raises:
520
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
521

Z
zhupengyang 已提交
522
    Examples:
523 524
        .. code-block:: python

Z
zhupengyang 已提交
525
            import paddle
526

Z
zhupengyang 已提交
527 528
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
529

Z
zhupengyang 已提交
530 531
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
532

Z
zhupengyang 已提交
533 534 535
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
536

Z
zhupengyang 已提交
537 538 539
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
540 541 542 543 544 545 546
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
547

548
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
549 550 551 552 553 554


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
555
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
556 557 558 559 560

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
561
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
585
def tril(x, diagonal=0, name=None):
586
    r"""
W
WuHaobo 已提交
587
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
588
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
589 590 591 592
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
593
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
594 595 596 597 598 599 600 601 602 603 604 605
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
606
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
607
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
608 609 610

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
611
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
612 613 614 615 616

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
617
            import paddle
W
WuHaobo 已提交
618 619 620 621 622 623

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

Y
yaoxuefeng 已提交
624

625
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
626 627
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
628 629 630 631 632
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
633
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
634 635 636 637 638
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
639
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
640 641 642 643
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

644 645 646
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
647
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
648 649 650 651

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
652
def triu(x, diagonal=0, name=None):
653
    r"""
W
WuHaobo 已提交
654
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
655
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
656 657 658 659
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
660
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
661 662 663 664 665 666 667 668 669 670 671 672
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
673
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
674
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
675 676 677

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
678
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
679 680 681 682 683

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
684
            import paddle
W
WuHaobo 已提交
685 686 687 688 689

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
690

W
WuHaobo 已提交
691 692

            # example 1, default diagonal
693
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
694
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
695 696 697 698 699
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
700
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
701 702 703 704 705
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
706
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
707 708 709 710 711
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
712 713
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
714
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
715 716

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
717 718


719
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
720
    """
721
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
722 723 724
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
725
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
726
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
727 728
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
729 730 731
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
732
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
733 734 735 736 737 738

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
739 740 741 742
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
743

Y
yaoxuefeng 已提交
744 745
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
746 747 748 749 750 751

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

752 753
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
754
    if in_dygraph_mode():
755 756
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
757 758
        return out

759
    name = kwargs.get("name", None)
S
suytingwan 已提交
760 761
    helper = LayerHelper('meshgrid', **locals())

762 763
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
764

765
    for id, input_ in enumerate(args):
S
suytingwan 已提交
766 767 768 769
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

770
    num = len(args)
S
suytingwan 已提交
771
    out = [
772
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
773 774
        for i in range(num)
    ]
775 776
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
777 778

    return out
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
855 856 857 858 859 860 861
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

862 863 864 865 866 867 868 869 870 871 872 873 874
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
        x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float16, float32, float64, int32 and int64.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('assign', **locals())
    check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
    if isinstance(x, Variable):
        check_dtype(
            x.dtype, 'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign', inputs={'X': [x]}, outputs={'Out': [output]})
    elif isinstance(x, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(x.dtype)
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in x.flat]
        elif dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in x.flat]
        else:
            raise TypeError(
                "When the type of 'x' in assign is numpy.ndarray, "
                "the data type of 'x' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if x.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={'dtype': dtype,
                   'shape': list(x.shape),
                   value_name: values})

    return output