reader.py 74.4 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
from .framework import _get_paddle_place, _get_paddle_place_list
31
from paddle.fluid.framework import _set_expected_place, _current_expected_place
32
import logging
33
import warnings
S
sneaxiy 已提交
34

35
### Dygraph DataLoader configs ###
36
import os
37 38
import multiprocessing
import signal
39

40
# NOTE: queue has a different name in python2 and python3
41
if six.PY2:
42 43 44
    import Queue as queue
else:
    import queue
45

46 47 48
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

49
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
50 51

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
52

53
KEEP_DATA_LOADER_ORDER = True
54
USE_PINNED_MEMORY = None
55 56 57 58 59 60 61 62 63 64


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
65

66 67 68 69 70 71 72 73 74
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
114 115 116
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
117

Z
Zeng Jinle 已提交
118 119
    def __call__(self):
        return self
S
sneaxiy 已提交
120

Z
Zeng Jinle 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

136 137 138 139 140 141 142 143 144 145 146 147
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
148 149

class DataLoader(object):
150 151 152 153 154 155 156 157
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
158
    DataLoader supports map-style dataset and iterable-style dataset.
159

K
Kaipeng Deng 已提交
160 161 162 163 164 165 166
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


183 184
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
185 186
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
187 188
        feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
            The Tensors should be created by :code:`paddle.static.data()`.
189 190
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
191
        places(list(Place)|tuple(Place)|list(str)|optional): a list of Place,
192 193
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
194 195 196
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
197 198
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
199
            value on each device would be a dict of str -> Tensor, where
200
            the key of the dict is the name of each fed Tensors. If 
201
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
202
            be a list(Tensor). :attr:`return_list` can only be True
203
            in dynamic graph mode. Default True.
204 205 206
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
207
        batch_size(int|None): sample number in a mini-batch, a substitution
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
241
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
242 243 244 245 246 247

    Examples:
        
        .. code-block:: python

            import numpy as np
248 249

            import paddle
K
Kaipeng Deng 已提交
250 251
            import paddle.nn as nn
            import paddle.nn.functional as F
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

274 275
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
276
            class SimpleNet(nn.Layer):
277 278
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
279
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
280 281 282 283

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
284 285 286
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
287 288

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
289
                                batch_size=BATCH_SIZE,
290 291 292 293 294
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
295 296 297 298 299 300 301 302
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
303 304


305 306 307 308
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

309 310 311 312 313 314
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
315
                 return_list=True,
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

340 341
        if places is None:
            places = _current_expected_place()
342 343 344 345
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
346 347 348 349 350
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
351 352 353
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
354 355 356 357 358 359 360 361 362 363
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

364 365 366 367 368 369 370 371 372 373 374 375
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

376 377 378 379 380
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
381 382 383 384
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
385
        else:
386 387
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
388
                "batch_sampler is not given"
389
            self.batch_size = batch_size
390 391 392 393 394 395 396 397 398
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
399

400 401
        self.auto_collate_batch = self.batch_sampler is not None

402 403 404 405 406
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

407
    def __len__(self):
408 409 410
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
411
            if self.auto_collate_batch:
412
                return len(self.batch_sampler)
413 414
            else:
                return len(self.dataset)
415 416 417 418 419 420 421 422 423 424

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
425 426 427 428 429
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
430
                       return_list=False,
431 432
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
433
        """
K
Kaipeng Deng 已提交
434 435 436 437
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

438 439 440
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
441 442 443 444 445 446 447 448
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
449
        
Z
Zeng Jinle 已提交
450 451 452 453 454
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
455
        process.
Z
Zeng Jinle 已提交
456 457

        Args:  
458 459
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
473
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
474 475
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
476 477 478 479 480 481
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
482 483 484 485 486 487 488
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
489 490 491 492

        Returns:
            loader (DataLoader): the created DataLoader object.

493
        Examples 1:
Z
Zeng Jinle 已提交
494 495
            
            .. code-block:: python
S
sneaxiy 已提交
496

497 498 499
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
500
                import numpy as np
501

502 503 504 505 506
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
507 508 509 510 511 512 513 514 515 516 517
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

518 519
                paddle.enable_static()

Z
Zeng Jinle 已提交
520
                def simple_net(image, label):
521 522 523 524
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
564

Z
Zeng Jinle 已提交
565
                    return __reader__
566

Z
Zeng Jinle 已提交
567 568 569 570 571
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
572

Z
Zeng Jinle 已提交
573 574 575 576 577 578 579
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
580
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
581 582 583 584 585 586 587 588 589 590 591
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
592

593 594
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
595

Z
Zeng Jinle 已提交
596
                # Define DataLoader 
597
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
598

Z
Zeng Jinle 已提交
599 600
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
601

Z
Zeng Jinle 已提交
602 603 604
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
605 606
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
607 608
                # 
                # If DataLoader is not iterable, places can be None.
609
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
610
                set_data_source(loader, places)
S
sneaxiy 已提交
611

612 613
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
614

615
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
616

Z
Zeng Jinle 已提交
617 618 619 620 621 622
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


623 624 625 626
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
627
                '''
628
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
629
                '''
630
                import numpy as np
631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
695 696 697

            .. code-block:: python

698 699 700 701 702
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
703 704 705 706 707 708
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

709 710
                paddle.enable_static()

711 712 713 714 715 716
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

717
                x = static.data(name='x', shape=[None], dtype='float32')  
718 719 720
                y = x * x

                def run_inference(drop_last): 
721
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
722
                            capacity=8, drop_last=drop_last)
723
                    loader.set_batch_generator(batch_generator, static.cpu_places())
724

725 726
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
742
        """
743 744 745 746 747 748
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
749
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
750 751 752 753

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
754 755 756 757
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
758 759
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
760

Z
Zeng Jinle 已提交
761 762
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
763 764 765
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
766 767 768
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
769

Z
Zeng Jinle 已提交
770 771 772
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
773

Z
Zeng Jinle 已提交
774 775 776
        Examples:

            .. code-block:: python
777

778 779 780 781
                import paddle
                import paddle.static as static

                paddle.enable_static()
782

783 784
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
785

786 787 788 789 790
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
791
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
792

793
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
794 795
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
796

S
sneaxiy 已提交
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
823 824
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
825 826 827
            )
        self._iterable = True
        if not return_list:
828 829
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
830 831 832 833 834 835 836
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
837 838
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
855 856
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
857 858 859 860 861 862 863 864 865

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

866 867 868 869 870 871 872 873 874 875
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

876 877 878 879 880 881 882 883 884 885 886
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
887
            core._erase_process_pids(id(self))
888

889 890 891 892 893 894 895 896 897
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
898
            core.Variable(), self._capacity, False)
899
        self._reader = None
900 901
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
902 903
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
904 905 906

    def _start(self):
        if self._use_multiprocess:
907 908 909
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
910
            self._data_queue = multiprocessing.Queue(self._capacity)
911 912 913
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
914
            self._process = multiprocessing.Process(
915 916
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
917 918 919 920 921 922 923 924 925
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
926 927
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
928 929 930 931

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
932 933
                target=self._reader_thread_loop_for_multiprocess,
                args=(_current_expected_place(), ))
934 935 936
            self._thread.daemon = True
            self._thread.start()
        else:
937
            self._thread = threading.Thread(
938 939
                target=self._reader_thread_loop_for_singleprocess,
                args=(_current_expected_place(), ))
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

965 966 967 968 969 970 971 972 973
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

974 975 976 977
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
        _set_expected_place(legacy_expected_place)

978 979 980 981 982 983 984
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
985 986 987 988 989 990 991
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
992 993 994 995
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
996
                self._exit_thread_unexpectedly()
997 998
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
999
                )
1000
                six.reraise(*sys.exc_info())
1001 1002

            if not self._thread_done_event.is_set():
1003
                if tensor_list is not None:
1004 1005
                    try:
                        array = core.LoDTensorArray()
1006 1007
                        for tensor in tensor_list:
                            array.append(tensor)
1008 1009 1010
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1011
                        self._exit_thread_unexpectedly()
1012 1013
                        six.reraise(*sys.exc_info())
                else:
1014
                    self._exit_thread_expectedly()
1015

1016
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1017
        try:
1018 1019 1020
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
            _set_expected_place(legacy_expected_place)

1021 1022 1023 1024
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1025
                        item = self._check_input_array(item)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1050 1051 1052 1053
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1054 1055 1056 1057 1058 1059 1060
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
1061 1062 1063 1064 1065
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1081 1082 1083 1084
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1085
        self._batch_reader = reader
1086 1087
        if places is None:
            places = _current_expected_place()
1088 1089
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1090
            "Number of places must be 1 in imperative mode"
1091 1092 1093
        return self


Z
Zeng Jinle 已提交
1094
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
1095
    def __init__(self,
1096 1097
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1098
                 use_double_buffer=True,
1099
                 iterable=True,
1100 1101
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1102
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1103
        self._places = None
S
sneaxiy 已提交
1104
        self._thread = None
1105
        self._queue = None
1106
        self._feed_list = feed_list
1107 1108 1109
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1110 1111
        if not capacity:
            raise ValueError("Please give value to capacity.")
1112 1113 1114 1115
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1116 1117 1118 1119
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1120

Z
Zeng Jinle 已提交
1121
    def _wait_thread_ends(self):
1122
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1123 1124 1125 1126 1127 1128 1129 1130
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1131 1132 1133 1134 1135 1136
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1137 1138
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1139
        self._reader = None
S
sneaxiy 已提交
1140
        self._reader = core.create_py_reader(
1141
            self.queue, self._var_names, self._shapes, self._dtypes,
1142
            self._need_check_feed, self._places, self._use_double_buffer,
1143
            self._drop_last, False)
S
sneaxiy 已提交
1144 1145 1146 1147 1148 1149 1150

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1151
        need_check_feed = []
S
sneaxiy 已提交
1152 1153 1154 1155 1156 1157 1158

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1159
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1160

Z
Zeng Jinle 已提交
1161 1162 1163 1164
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1165

S
sneaxiy 已提交
1166
        var = global_scope().var(queue_name)
1167 1168 1169 1170 1171 1172 1173
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1174

1175
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1176

1177
        dtype_int = [int(t) for t in dtypes]
1178
        block.append_op(
S
sneaxiy 已提交
1179 1180
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1181
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1182 1183 1184
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1185 1186
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1187 1188 1189
                'ranks': ranks
            })

1190 1191 1192
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1204

1205
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1220 1221
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1222 1223 1224 1225 1226 1227 1228 1229

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1230

Z
Zeng Jinle 已提交
1231 1232
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1233
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1234
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1235

Z
Zeng Jinle 已提交
1236
        self._init_iterable()
S
sneaxiy 已提交
1237
        self._start()
Z
Zeng Jinle 已提交
1238 1239 1240 1241
        return self

    def __next__(self):
        try:
1242 1243
            if self._return_list:
                return self._reader.read_next_list()
1244
            else:
1245
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1246 1247 1248 1249 1250 1251
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1252 1253
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1254 1255

    def reset(self):
1256 1257
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1258 1259

    def _start(self):
1260
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1261
            try:
1262 1263 1264
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

1265 1266 1267 1268
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1269 1270 1271 1272
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1273
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1286
                self._queue.kill()
Z
Zeng Jinle 已提交
1287 1288 1289 1290
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

1291 1292
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(), ))
Z
Zeng Jinle 已提交
1293 1294
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1295

S
sneaxiy 已提交
1296
    def _reset(self):
1297
        self._queue.close()
1298
        self._exited = True
Z
Zeng Jinle 已提交
1299 1300 1301 1302
        thread = self._thread
        if thread is not None:
            thread.join()

1303
        self._exited = False
1304 1305
        self._reader.reset()

Z
Zeng Jinle 已提交
1306 1307 1308 1309 1310 1311
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1312 1313 1314 1315
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1316 1317 1318 1319 1320 1321 1322
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1323 1324 1325 1326 1327
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1328 1329 1330 1331 1332 1333 1334
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1335 1336 1337
        return self

    def set_sample_list_generator(self, reader, places=None):
1338 1339 1340 1341
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1342 1343 1344 1345
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1346

1347 1348 1349
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1350 1351 1352 1353 1354

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1355 1356 1357 1358
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1371
    r"""
Z
Zeng Jinle 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1393
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1394 1395 1396 1397 1398
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1399 1400 1401 1402
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1422 1423 1424 1425 1426
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1438 1439
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1440 1441 1442 1443 1444 1445 1446 1447

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1448 1449
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1477 1478 1479 1480 1481
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1482 1483 1484
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1485 1486 1487
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1488 1489
               return reader

G
guofei 已提交
1490 1491 1492
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1493 1494 1495 1496

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1497 1498 1499 1500 1501 1502
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1503 1504
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1505
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1560 1561

    def start(self):
S
add doc  
sneaxiy 已提交
1562 1563 1564
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1565
        
G
guofei 已提交
1566 1567
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1568
    
H
Huihuang Zheng 已提交
1569 1570 1571 1572
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1573 1574 1575 1576 1577 1578
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1579
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1580 1581 1582 1583
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1584
                executor = fluid.Executor(fluid.CPUPlace())
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1595 1596
	    '''
        self._loader.start()
S
sneaxiy 已提交
1597

S
sneaxiy 已提交
1598
    def reset(self):
S
add doc  
sneaxiy 已提交
1599 1600 1601
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1602 1603 1604 1605
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1606 1607 1608 1609
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1610 1611 1612 1613 1614 1615
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1616
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1617 1618 1619 1620
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1621
                executor = fluid.Executor(fluid.CPUPlace())
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1632
        '''
Z
Zeng Jinle 已提交
1633
        self._loader.reset()
S
sneaxiy 已提交
1634

S
sneaxiy 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1644
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1645 1646 1647 1648

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1649
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1650 1651 1652

        Args:
            sample_generator (generator): Python generator that yields
1653
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1654 1655 1656 1657 1658
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1659 1660 1661 1662

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1663 1664 1665
                import paddle.fluid as fluid
                import numpy as np

1666 1667 1668
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1669 1670 1671 1672 1673
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1685 1686
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1687 1688 1689 1690 1691
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1692 1693 1694 1695
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1696 1697 1698

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1699
                        executor.run(feed=data, fetch_list=[loss])
1700
    
S
sneaxiy 已提交
1701
        '''
Z
Zeng Jinle 已提交
1702 1703
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1704

S
sneaxiy 已提交
1705
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1706 1707 1708 1709
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1710
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1711 1712 1713 1714
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1715 1716 1717 1718
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1719 1720 1721 1722
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1723 1724 1725 1726
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1727 1728 1729 1730
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1731 1732 1733 1734 1735
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1746 1747
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1748 1749 1750 1751 1752
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1753 1754 1755 1756 1757
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1758 1759 1760

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1761
                        executor.run(feed=data, fetch_list=[loss])
1762
                 
S
add doc  
sneaxiy 已提交
1763
        '''
Z
Zeng Jinle 已提交
1764
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1765

S
sneaxiy 已提交
1766
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1767 1768 1769 1770
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1771
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1772 1773 1774 1775 1776 1777

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1778
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1779
                be provided when PyReader is iterable.
1780 1781 1782 1783

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1784 1785 1786
                import paddle.fluid as fluid
                import numpy as np

1787 1788 1789
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1790 1791 1792 1793 1794
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1795 1796 1797 1798 1799 1800 1801 1802

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1803 1804
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1805 1806 1807
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1808 1809
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1810 1811 1812
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1813 1814 1815 1816 1817
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1818 1819 1820

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1821
                        executor.run(feed=data, fetch_list=[loss])
1822

S
add doc  
sneaxiy 已提交
1823
        '''
Z
Zeng Jinle 已提交
1824 1825 1826 1827 1828
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1829
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1830 1831 1832
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"
1833 1834 1835 1836
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

1847
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
1848

1849
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1850 1851 1852
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
1853
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()