reader.py 58.5 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
Z
Zeng Jinle 已提交
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
S
sneaxiy 已提交
24
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
25
from .unique_name import UniqueNameGenerator
26
import logging
Z
Zeng Jinle 已提交
27
from .dataset import DatasetBase, InMemoryDataset
S
sneaxiy 已提交
28

29
### Dygraph DataLoader configs ###
30 31
import atexit
import os
32 33 34 35 36 37 38
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
if sys.version_info[0] == 2:
    import Queue as queue
else:
    import queue
39 40 41 42 43 44 45
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

# NOTE: [ mmap files clear ] If there is still data in the multiprocess queue when the main process finishes reading,
# the data in the queue needs to be popped. Then the LoDTensor read by the main process
# from the child process will automatically clear the memory-mapped file.
multiprocess_queue_set = set()
46

Z
Zeng Jinle 已提交
47 48 49
__all__ = ['PyReader', 'DataLoader']

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def _clear_multiprocess_queue_set():
    global multiprocess_queue_set
    for data_queue in multiprocess_queue_set:
        while True:
            try:
                data_queue.get_nowait()
            except queue.Empty:
                break


# NOTE: main process clear function at exit
def _cleanup():
    # NOTE: inter-process Queue shared memory objects clear function
    _clear_multiprocess_queue_set()
    # NOTE: main process memory map files clear funciton
    core._cleanup_mmap_fds()


# NOTE used for register a function to be executed at interpreter exit.
class CleanupFuncRegistrar():
    # Record the cleanup functions that have been executed
    _executed_func_set = set()
    # Record the cleanup functions that have been registered
    _registered_func_set = set()

    @classmethod
    def register(cls, function, signals=[signal.SIGTERM]):
        def _func_exectuor():
            if function not in cls._executed_func_set:
                try:
                    function()
                finally:
                    cls._executed_func_set.add(function)

        def _func_register(function):
            if not callable(function):
                raise TypeError("%s is not callable object." % (function))
            # check function object whether hash-able
            set([function])
            if function not in cls._registered_func_set:
                atexit.register(_func_exectuor)
                cls._registered_func_set.add(function)

        def _signal_handler(signum=None, frame=None):
            _func_exectuor()
            if signum is not None:
                if signum == signal.SIGINT:
                    raise KeyboardInterrupt
                sys.exit(signum)

        def _signal_register(signals):
            signals = set(signals)
            for sig in signals:
                orig_handler = signal.signal(sig, _signal_handler)
                if orig_handler not in (signal.SIG_DFL, signal.SIG_IGN):
                    if (sig == signal.SIGINT and
                            orig_handler is signal.default_int_handler):
                        continue
                    if orig_handler not in cls._registered_func_set:
                        atexit.register(orig_handler)
                        cls._registered_func_set.add(orig_handler)

        # deal with signals
        _signal_register(signals)
        # deal with function
        _func_register(function)


# NOTE: [ mmap files clear ] When the main process exits unexpectedly, the remaining
# shared memory objects in the inter-process Queue and the main process (mostly in the
# BlockingQueue) may not be completely released, resulting in the corresponding
# memory-mapped file remaining on the disk (/dev/shm), so register this function
# to clean up shared memory objects in these two queues before the python interpreter exits.
140 141 142
# NOTE: Currently multi-process DataLoader only supports Linux platform
if not (sys.platform == 'darwin' or sys.platform == 'win32'):
    CleanupFuncRegistrar.register(_cleanup)
143 144


Z
Zeng Jinle 已提交
145 146 147
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
148

Z
Zeng Jinle 已提交
149 150
    def __call__(self):
        return self
S
sneaxiy 已提交
151

Z
Zeng Jinle 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()


class DataLoader(object):
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
174 175
                       return_list=False,
                       use_multiprocess=False):
Z
Zeng Jinle 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        """
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.

        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
198
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
212
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
213 214
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
215 216 217 218 219 220
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
Z
Zeng Jinle 已提交
221 222 223 224 225 226 227

        Returns:
            loader (DataLoader): the created DataLoader object.

        Examples:
            
            .. code-block:: python
S
sneaxiy 已提交
228

Z
Zeng Jinle 已提交
229 230
                import paddle.fluid as fluid
                import numpy as np
231

Z
Zeng Jinle 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
287

Z
Zeng Jinle 已提交
288
                    return __reader__
289

Z
Zeng Jinle 已提交
290 291 292 293 294
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
295

Z
Zeng Jinle 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
315

316 317
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
318

Z
Zeng Jinle 已提交
319 320
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
321

Z
Zeng Jinle 已提交
322 323
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
324

Z
Zeng Jinle 已提交
325 326 327 328 329 330 331 332 333
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
334

Z
Zeng Jinle 已提交
335 336
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
337

Z
Zeng Jinle 已提交
338
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
339

Z
Zeng Jinle 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
        """
358 359 360 361 362 363 364
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
                                   iterable, return_list)
Z
Zeng Jinle 已提交
365 366 367 368 369 370

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
371

Z
Zeng Jinle 已提交
372 373 374 375 376 377 378
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
379

Z
Zeng Jinle 已提交
380 381 382
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
383

Z
Zeng Jinle 已提交
384 385 386
        Examples:

            .. code-block:: python
387

Z
Zeng Jinle 已提交
388
                import paddle.fluid as fluid
389

390 391
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
392

Z
Zeng Jinle 已提交
393 394 395 396 397
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
398

Z
Zeng Jinle 已提交
399 400 401
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
402

S
sneaxiy 已提交
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
            logging.warning(
                "Please NOTE: dygraph can support iterable mode only. Change to iterable mode."
            )
        self._iterable = True
        if not return_list:
            logging.warning(
                "Please NOTE: dygraph can support return as list only. Change to return as list."
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
            logging.warning(
                "NOTE: The multiprocess mode does not currently support MacOs and Windows."
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

470 471 472 473 474 475 476 477 478 479
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

480 481 482 483 484 485 486 487 488 489 490 491 492
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
            core._erase_process_pid(id(self))

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def _set_child_signal_handler(self):
        core._set_process_pid(id(self), self._process.pid)
        current_handler = signal.getsignal(signal.SIGCHLD)
        if not callable(current_handler):
            current_handler = None

        def __handler__(signum, frame):
            # NOTE: Here the signum is SIGDHLD, when the child process exits, this handler
            # will be called whenever the child process exits normally or abnormally.
            core._throw_error_if_process_failed()
            if current_handler is not None:
                current_handler(signum, frame)

        signal.signal(signal.SIGCHLD, __handler__)

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity)
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
            self._need_check_feed, self._places, self._use_double_buffer)

    def _start(self):
        if self._use_multiprocess:
524 525 526
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
527
            self._data_queue = multiprocessing.Queue(self._capacity)
528 529 530
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
            self._process = multiprocessing.Process(
                target=self._reader_process_loop)
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
            self._set_child_signal_handler()

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
547
                target=self._reader_thread_loop_for_multiprocess)
548 549 550
            self._thread.daemon = True
            self._thread.start()
        else:
551 552
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")

589 590 591 592 593 594 595 596 597
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

598 599 600 601 602
    def _reader_process_loop(self):
        try:
            # set signal handler
            core._set_process_signal_handler()

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            # child process clear function at exit
            def _cleanup():
                # clear memory map files in child process
                core._cleanup_mmap_fds()

            # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
            # some shared memory objects may have been applied for but have not yet
            # been put into the inter-process Queue. This part of the object needs
            # to be cleaned up when the process ends.
            CleanupFuncRegistrar.register(_cleanup)

            for batch in self._batch_reader():
                tensor_list = core._convert_to_tensor_list(batch)
                self._data_queue.put(tensor_list)
                core._remove_tensor_list_mmap_fds(tensor_list)
618 619 620 621 622 623 624
            self._data_queue.put(None)
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            six.reraise(*sys.exc_info())

625
    def _reader_thread_loop_for_multiprocess(self):
626 627 628 629 630 631 632
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
633 634 635 636 637 638 639
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
640 641 642 643
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
644
                self._exit_thread_unexpectedly()
645 646
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
647
                )
648
                six.reraise(*sys.exc_info())
649 650

            if not self._thread_done_event.is_set():
651
                if tensor_list is not None:
652 653
                    try:
                        array = core.LoDTensorArray()
654 655
                        for tensor in tensor_list:
                            array.append(tensor)
656 657 658
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
659
                        self._exit_thread_unexpectedly()
660 661
                        six.reraise(*sys.exc_info())
                else:
662
                    self._exit_thread_expectedly()
663

664
    def _reader_thread_loop_for_singleprocess(self):
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
                        self._check_input_array(item)
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
        assert places is not None, "Places cannot be None when DataLoader is iterable"
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
            "Number of places must be 1 in dygraph mode"
        return self


Z
Zeng Jinle 已提交
725
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
726
    def __init__(self,
727 728
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
729
                 use_double_buffer=True,
730 731
                 iterable=True,
                 return_list=False):
S
sneaxiy 已提交
732
        self._tensor_reader = None
Z
Zeng Jinle 已提交
733
        self._places = None
S
sneaxiy 已提交
734
        self._thread = None
735
        self._queue = None
736 737 738
        self._feed_list = feed_list
        if not capacity:
            raise ValueError("Please give value to capacity.")
739 740 741 742
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
743 744 745 746
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
747

Z
Zeng Jinle 已提交
748
    def _wait_thread_ends(self):
749
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
750 751 752 753 754 755 756 757
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
758 759 760 761 762 763
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
S
sneaxiy 已提交
764 765 766
        self._queue = core.init_lod_tensor_blocking_queue(core.Variable(),
                                                          self._capacity)
        self._reader = core.create_py_reader(
767 768
            self.queue, self._var_names, self._shapes, self._dtypes,
            self._need_check_feed, self._places, self._use_double_buffer)
S
sneaxiy 已提交
769 770 771 772 773 774 775

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
776
        need_check_feed = []
S
sneaxiy 已提交
777 778 779 780 781 782 783

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
784
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
785

Z
Zeng Jinle 已提交
786 787 788 789
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
790

S
sneaxiy 已提交
791
        var = global_scope().var(queue_name)
S
sneaxiy 已提交
792 793 794 795 796
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity)

        startup_blk = default_startup_program().current_block()
        startup_var = startup_blk.create_var(name=reader_name)

797
        dtype_int = [int(t) for t in dtypes]
S
sneaxiy 已提交
798 799 800 801 802 803 804
        startup_blk.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [startup_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
805 806
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
                'ranks': ranks
            })

        startup_var.desc.set_dtypes(dtypes)
        startup_var.persistable = True

        main_prog_var = _copy_reader_var_(
            default_main_program().current_block(), startup_var)

        main_prog_var.stop_gradient = True
        main_prog_var.persistable = True

        reader = monkey_patch_reader_methods(main_prog_var)
        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
            outputs={'Out': self._feed_list})

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
842

Z
Zeng Jinle 已提交
843 844
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
845
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
846
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
847

Z
Zeng Jinle 已提交
848
        self._init_iterable()
S
sneaxiy 已提交
849
        self._start()
Z
Zeng Jinle 已提交
850 851 852 853
        return self

    def __next__(self):
        try:
854 855
            if self._return_list:
                return self._reader.read_next_list()
856
            else:
857
                return self._reader.read_next()
Z
Zeng Jinle 已提交
858 859 860 861 862 863
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
864 865
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
866 867

    def reset(self):
868 869
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
870

871 872 873 874 875 876 877 878 879 880 881
    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError((
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."))

Z
Zeng Jinle 已提交
882 883 884 885 886 887 888
    def _start(self):
        def __thread_main__():
            try:
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
889
                            self._check_input_array(item)
Z
Zeng Jinle 已提交
890 891 892 893 894 895 896 897 898 899 900 901
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
902
                self._queue.kill()
Z
Zeng Jinle 已提交
903 904 905 906 907 908 909
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
910

S
sneaxiy 已提交
911
    def _reset(self):
912
        self._queue.close()
Z
Zeng Jinle 已提交
913 914 915 916
        thread = self._thread
        if thread is not None:
            thread.join()

917 918
        self._reader.reset()

Z
Zeng Jinle 已提交
919 920 921 922 923 924
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
925 926 927 928 929 930 931
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
932 933 934 935 936
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
937 938 939 940 941 942 943
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
944 945 946
        return self

    def set_sample_list_generator(self, reader, places=None):
947 948 949 950
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
951

952 953 954
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
994
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
995 996 997 998 999
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1000 1001 1002 1003
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1023 1024 1025 1026 1027
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1039 1040
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1041 1042 1043 1044 1045 1046 1047 1048

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1049 1050
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1078 1079 1080 1081 1082
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1083 1084 1085
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1086 1087 1088
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1089 1090
               return reader

G
guofei 已提交
1091 1092 1093
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1094 1095 1096 1097

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1098 1099 1100 1101 1102 1103
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1104 1105
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1106
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1161 1162

    def start(self):
S
add doc  
sneaxiy 已提交
1163 1164 1165
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1166
        
G
guofei 已提交
1167 1168
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1169
    
H
Huihuang Zheng 已提交
1170 1171 1172 1173
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1174 1175 1176 1177 1178 1179
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1180
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1181 1182 1183 1184
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1185
                executor = fluid.Executor(fluid.CPUPlace())
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1196 1197
	    '''
        self._loader.start()
S
sneaxiy 已提交
1198

S
sneaxiy 已提交
1199
    def reset(self):
S
add doc  
sneaxiy 已提交
1200 1201 1202
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1203 1204 1205 1206
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1207 1208 1209 1210
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1211 1212 1213 1214 1215 1216
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1217
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1218 1219 1220 1221
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1222
                executor = fluid.Executor(fluid.CPUPlace())
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1233
        '''
Z
Zeng Jinle 已提交
1234
        self._loader.reset()
S
sneaxiy 已提交
1235

S
sneaxiy 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1245
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1246 1247 1248 1249

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1250
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1251 1252 1253

        Args:
            sample_generator (generator): Python generator that yields
1254
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1255 1256 1257 1258 1259
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1260 1261 1262 1263

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1264 1265 1266
                import paddle.fluid as fluid
                import numpy as np

1267 1268 1269
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1270 1271 1272 1273 1274
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1286 1287
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1288 1289 1290 1291 1292
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1293 1294 1295 1296
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1297 1298 1299

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1300
                        executor.run(feed=data, fetch_list=[loss])
1301
    
S
sneaxiy 已提交
1302
        '''
Z
Zeng Jinle 已提交
1303 1304
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1305

S
sneaxiy 已提交
1306
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1307 1308 1309 1310
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1311
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1312 1313 1314 1315
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1316 1317 1318 1319
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1320 1321 1322 1323
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1324 1325 1326 1327
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1328 1329 1330 1331
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1332 1333 1334 1335 1336
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1347 1348
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1349 1350 1351 1352 1353
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1354 1355 1356 1357 1358
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1359 1360 1361

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1362
                        executor.run(feed=data, fetch_list=[loss])
1363
                 
S
add doc  
sneaxiy 已提交
1364
        '''
Z
Zeng Jinle 已提交
1365
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1366

S
sneaxiy 已提交
1367
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1368 1369 1370 1371
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1372
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1373 1374 1375 1376 1377 1378

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1379
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1380
                be provided when PyReader is iterable.
1381 1382 1383 1384

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1385 1386 1387
                import paddle.fluid as fluid
                import numpy as np

1388 1389 1390
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1391 1392 1393 1394 1395
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1396 1397 1398 1399 1400 1401 1402 1403

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1404 1405
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1406 1407 1408
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1409 1410
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1411 1412 1413
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1414 1415 1416 1417 1418
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1419 1420 1421

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1422
                        executor.run(feed=data, fetch_list=[loss])
1423

S
add doc  
sneaxiy 已提交
1424
        '''
Z
Zeng Jinle 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
        assert isinstance(dataset,
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

        if isinstance(dataset,
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()