Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
69b1ebdf
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
69b1ebdf
编写于
2月 26, 2019
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
差异文件
merge develop
test=develop
上级
2e67f8ae
60546b78
变更
43
隐藏空白更改
内联
并排
Showing
43 changed file
with
751 addition
and
418 deletion
+751
-418
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/framework/block_desc.cc
paddle/fluid/framework/block_desc.cc
+14
-0
paddle/fluid/framework/block_desc.h
paddle/fluid/framework/block_desc.h
+2
-0
paddle/fluid/framework/details/all_reduce_deps_pass.cc
paddle/fluid/framework/details/all_reduce_deps_pass.cc
+2
-2
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+2
-31
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+1
-1
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
...uid/framework/details/fast_threaded_ssa_graph_executor.cc
+4
-5
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
...luid/framework/details/fast_threaded_ssa_graph_executor.h
+2
-2
paddle/fluid/framework/details/memory_optimize_helper.cc
paddle/fluid/framework/details/memory_optimize_helper.cc
+39
-8
paddle/fluid/framework/details/memory_optimize_helper.h
paddle/fluid/framework/details/memory_optimize_helper.h
+6
-4
paddle/fluid/framework/details/memory_optimize_helper_test.cc
...le/fluid/framework/details/memory_optimize_helper_test.cc
+4
-22
paddle/fluid/framework/details/memory_optimize_pass.cc
paddle/fluid/framework/details/memory_optimize_pass.cc
+6
-8
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+4
-11
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+2
-4
paddle/fluid/framework/details/sequential_execution_pass.cc
paddle/fluid/framework/details/sequential_execution_pass.cc
+2
-2
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+4
-5
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+2
-2
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+3
-0
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+7
-1
paddle/fluid/framework/ir/mkldnn/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
...ir/mkldnn/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
+40
-10
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+50
-42
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+3
-3
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+15
-13
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+14
-6
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+6
-4
paddle/fluid/operators/alloc_continuous_space_op.cc
paddle/fluid/operators/alloc_continuous_space_op.cc
+211
-0
paddle/fluid/operators/detection/prior_box_op.h
paddle/fluid/operators/detection/prior_box_op.h
+12
-1
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
+4
-108
paddle/fluid/platform/event.h
paddle/fluid/platform/event.h
+3
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+4
-4
paddle/fluid/pybind/ir.cc
paddle/fluid/pybind/ir.cc
+2
-1
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+2
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+6
-5
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+1
-0
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+46
-25
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+2
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+42
-14
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+5
-2
python/paddle/fluid/reader.py
python/paddle/fluid/reader.py
+5
-5
python/paddle/fluid/tests/unittests/test_alloc_continuous_space_op.py
...e/fluid/tests/unittests/test_alloc_continuous_space_op.py
+74
-0
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+59
-56
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+5
-5
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_transformer.py
...id/tests/unittests/test_ir_memory_optimize_transformer.py
+33
-5
未找到文件。
paddle/fluid/API.spec
浏览文件 @
69b1ebdf
...
...
@@ -46,7 +46,7 @@ paddle.fluid.AsyncExecutor.init_worker ArgSpec(args=['self', 'dist_desc', 'start
paddle.fluid.AsyncExecutor.run ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', 'mode', 'debug'], varargs=None, keywords=None, defaults=('', False))
paddle.fluid.AsyncExecutor.save_model ArgSpec(args=['self', 'save_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.CompiledProgram.__init__ ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.CompiledProgram.__init__ ArgSpec(args=['self', 'program
_or_graph
'], varargs=None, keywords=None, defaults=None)
paddle.fluid.CompiledProgram.with_data_parallel ArgSpec(args=['self', 'loss_name', 'build_strategy', 'exec_strategy', 'share_vars_from', 'places'], varargs=None, keywords=None, defaults=(None, None, None, None, None))
paddle.fluid.CompiledProgram.with_inference_optimize ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=None)
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.ExecutionStrategy) -> None
...
...
paddle/fluid/framework/block_desc.cc
浏览文件 @
69b1ebdf
...
...
@@ -163,6 +163,20 @@ std::vector<OpDesc *> BlockDesc::AllOps() const {
return
res
;
}
void
BlockDesc
::
Clear
()
{
// clear all ops
ops_
.
clear
();
// clear all vars which are not persistable
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
if
(
it
->
second
->
Persistable
())
{
++
it
;
}
else
{
vars_
.
erase
(
it
++
);
}
}
}
void
BlockDesc
::
Flush
()
{
for
(
auto
&
op_desc
:
ops_
)
{
op_desc
->
Flush
();
...
...
paddle/fluid/framework/block_desc.h
浏览文件 @
69b1ebdf
...
...
@@ -97,6 +97,8 @@ class BlockDesc {
std
::
vector
<
OpDesc
*>
AllOps
()
const
;
void
Clear
();
size_t
OpSize
()
const
{
return
ops_
.
size
();
}
OpDesc
*
Op
(
int
idx
)
const
{
return
ops_
.
at
(
idx
).
get
();
}
...
...
paddle/fluid/framework/details/all_reduce_deps_pass.cc
浏览文件 @
69b1ebdf
...
...
@@ -50,7 +50,7 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
std
::
unordered_map
<
std
::
string
,
int
>
vars
;
// TODO(gongwb): use graph topology sort to find the order of operators.
// Note that must assert topology sort is stable
auto
&
ops
=
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAll
OpDescs
);
auto
&
ops
=
graph
->
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kStaleProgram
OpDescs
);
for
(
auto
*
op_desc
:
ops
)
{
auto
outputs
=
op_desc
->
Outputs
();
for
(
auto
&
o_it
:
outputs
)
{
...
...
@@ -120,4 +120,4 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
REGISTER_PASS
(
all_reduce_deps_pass
,
paddle
::
framework
::
details
::
AllReduceDepsPass
)
.
Require
PassAttr
(
paddle
::
framework
::
details
::
kAll
OpDescs
);
.
Require
GraphAttr
(
paddle
::
framework
::
details
::
kStaleProgram
OpDescs
);
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
69b1ebdf
...
...
@@ -174,7 +174,8 @@ bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
}
std
::
unique_ptr
<
ir
::
Graph
>
BuildStrategy
::
Apply
(
const
ProgramDesc
&
main_program
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
size_t
&
nranks
,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
...
...
@@ -185,7 +186,6 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
// Create a default one if not finalized by user.
CreatePassesFromStrategy
(
false
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
main_program
));
for
(
std
::
shared_ptr
<
ir
::
Pass
>
&
pass
:
pass_builder_
->
AllPasses
())
{
if
(
IsMultiDevPass
(
pass
->
Type
()))
{
pass
->
Erase
(
kPlaces
);
...
...
@@ -203,41 +203,12 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
Erase
(
"nccl_ctxs"
);
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
#endif
}
else
if
(
pass
->
Type
()
==
"memory_optimize_pass"
)
{
if
(
graph
->
Has
(
kAllOpDescs
))
{
graph
->
Erase
(
kAllOpDescs
);
}
const
std
::
vector
<
OpDesc
*>
*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
());
graph
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
all_op_descs
);
// take ownership
pass
->
Erase
(
kAllOpDescs
);
pass
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
all_op_descs
);
}
else
if
(
pass
->
Type
()
==
"sequential_execution_pass"
)
{
LOG
(
INFO
)
<<
"set enable_sequential_execution:"
<<
enable_sequential_execution_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
}
else
if
(
pass
->
Type
()
==
"all_reduce_deps_pass"
)
{
LOG
(
INFO
)
<<
"SeqOnlyAllReduceOps:"
<<
SeqOnlyAllReduceOps
(
*
this
)
<<
", num_trainers:"
<<
num_trainers_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
}
else
if
(
pass
->
Type
()
==
"inplace_pass"
)
{
if
(
graph
->
Has
(
kAllOpDescs
))
{
graph
->
Erase
(
kAllOpDescs
);
}
graph
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
}
else
if
(
pass
->
Type
()
==
"fuse_relu_depthwise_conv_pass"
)
{
if
(
!
use_cuda
)
{
LOG
(
WARNING
)
<<
"fuse_relu_depthwise_conv_pass is only supported on "
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
69b1ebdf
...
...
@@ -114,7 +114,7 @@ struct BuildStrategy {
// Apply the passes built by the pass_builder_. The passes will be
// applied to the Program and output an ir::Graph.
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
const
ProgramDesc
&
main_program
,
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
...
...
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
浏览文件 @
69b1ebdf
...
...
@@ -24,12 +24,11 @@ namespace details {
FastThreadedSSAGraphExecutor
::
FastThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
const
std
::
vector
<
platform
::
Place
>
&
places
,
ir
::
Graph
*
graph
)
:
strategy_
(
strategy
),
local_scopes_
(
local_scopes
),
places_
(
places
),
graph_
(
std
::
move
(
graph
)
),
graph_
(
graph
),
pool_
(
strategy
.
num_threads_
),
prepare_pool_
(
1
),
// add one more thread for generate op_deps
fetch_ctxs_
(
places
)
{
...
...
@@ -110,14 +109,14 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
}
}
if
(
exception_
.
IsCaught
())
{
ClearFetchOp
(
graph_
.
get
()
,
&
fetch_ops
);
ClearFetchOp
(
graph_
,
&
fetch_ops
);
exception_
.
ReThrow
();
}
}
num_complete
+=
num_comp
;
}
// Wait FetchOps.
ClearFetchOp
(
graph_
.
get
()
,
&
fetch_ops
);
ClearFetchOp
(
graph_
,
&
fetch_ops
);
return
fetches
;
}
...
...
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
浏览文件 @
69b1ebdf
...
...
@@ -32,7 +32,7 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
FastThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
ir
::
Graph
*
graph
);
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
override
;
const
ir
::
Graph
&
Graph
()
const
override
;
...
...
@@ -40,7 +40,7 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
unique_ptr
<
ir
::
Graph
>
graph_
;
ir
::
Graph
*
graph_
;
std
::
unordered_map
<
OpHandleBase
*
,
int
>
op_deps_
;
std
::
vector
<
OpHandleBase
*>
bootstrap_ops_
;
...
...
paddle/fluid/framework/details/memory_optimize_helper.cc
浏览文件 @
69b1ebdf
...
...
@@ -33,10 +33,10 @@ namespace details {
using
paddle
::
framework
::
VarDesc
;
std
::
vector
<
ir
::
Node
*>
SortOpLikeDescOrder
(
const
ir
::
Graph
&
graph
)
{
PADDLE_ENFORCE
(
graph
.
Has
(
k
All
OpDescs
),
"Graph has no attribute of k
All
OpDescs."
);
PADDLE_ENFORCE
(
graph
.
Has
(
k
StaleProgram
OpDescs
),
"Graph has no attribute of k
StaleProgram
OpDescs."
);
// 1. get op desc order
auto
&
op_descs
=
graph
.
Get
<
const
std
::
vector
<
OpDesc
*>>
(
k
All
OpDescs
);
auto
&
op_descs
=
graph
.
Get
<
const
std
::
vector
<
OpDesc
*>>
(
k
StaleProgram
OpDescs
);
// 2. topology sort order
auto
nodes
=
graph
.
Nodes
();
...
...
@@ -461,11 +461,21 @@ void ControlFlowGraph::LiveVariableAnalysis() {
}
}
}
for
(
auto
*
op
:
ops_
)
{
unlived_vars_
[
op
]
=
std
::
set
<
std
::
string
>
();
for
(
auto
&
var
:
this
->
LiveIn
(
op
))
{
if
(
!
this
->
LiveOut
(
op
).
count
(
var
))
{
unlived_vars_
[
op
].
insert
(
var
);
}
}
}
}
void
ControlFlowGraph
::
RenameVarInCFGGraph
(
const
std
::
string
&
old_node
,
const
std
::
string
&
new_node
,
int
begin_idx
)
{
std
::
vector
<
bool
>
need_update
(
ops_
.
size
(),
false
);
// update graph from begin idx to the end
for
(
size_t
i
=
begin_idx
;
i
!=
ops_
.
size
();
++
i
)
{
auto
*
op
=
ops_
[
i
];
...
...
@@ -480,15 +490,27 @@ void ControlFlowGraph::RenameVarInCFGGraph(const std::string& old_node,
if
(
live_in_
[
op
].
find
(
old_node
)
!=
live_in_
[
op
].
end
())
{
live_in_
[
op
].
erase
(
old_node
);
live_in_
[
op
].
insert
(
new_node
);
need_update
[
i
]
=
true
;
}
if
(
live_out_
[
op
].
find
(
old_node
)
!=
live_out_
[
op
].
end
())
{
live_out_
[
op
].
erase
(
old_node
);
live_out_
[
op
].
insert
(
new_node
);
need_update
[
i
]
=
true
;
}
}
for
(
size_t
i
=
begin_idx
;
i
<
ops_
.
size
();
++
i
)
{
if
(
!
need_update
[
i
])
continue
;
auto
*
op
=
ops_
[
i
];
for
(
auto
&
var
:
this
->
LiveIn
(
op
))
{
if
(
!
this
->
LiveOut
(
op
).
count
(
var
))
{
unlived_vars_
[
op
].
insert
(
var
);
}
}
}
}
const
std
::
set
<
std
::
string
>
ControlFlowGraph
::
LiveIn
(
ir
::
Node
*
op
)
const
{
const
std
::
set
<
std
::
string
>
&
ControlFlowGraph
::
LiveIn
(
ir
::
Node
*
op
)
const
{
auto
it
=
live_in_
.
find
(
op
);
PADDLE_ENFORCE
(
it
!=
live_in_
.
end
(),
...
...
@@ -496,7 +518,7 @@ const std::set<std::string> ControlFlowGraph::LiveIn(ir::Node* op) const {
return
it
->
second
;
}
const
std
::
set
<
std
::
string
>
ControlFlowGraph
::
LiveOut
(
ir
::
Node
*
op
)
const
{
const
std
::
set
<
std
::
string
>
&
ControlFlowGraph
::
LiveOut
(
ir
::
Node
*
op
)
const
{
auto
it
=
live_out_
.
find
(
op
);
PADDLE_ENFORCE
(
it
!=
live_out_
.
end
(),
...
...
@@ -504,15 +526,24 @@ const std::set<std::string> ControlFlowGraph::LiveOut(ir::Node* op) const {
return
it
->
second
;
}
const
std
::
set
<
std
::
string
>
ControlFlowGraph
::
Use
(
ir
::
Node
*
op
)
const
{
const
std
::
set
<
std
::
string
>
&
ControlFlowGraph
::
Use
(
ir
::
Node
*
op
)
const
{
auto
it
=
uses_
.
find
(
op
);
PADDLE_ENFORCE
(
it
!=
uses_
.
end
(),
string
::
Sprintf
(
"Expect %s in live_out, but Not Found."
,
op
->
Name
()));
string
::
Sprintf
(
"Expect %s in use, but Not Found."
,
op
->
Name
()));
return
it
->
second
;
}
const
std
::
set
<
std
::
string
>&
ControlFlowGraph
::
Unlived
(
ir
::
Node
*
op
)
const
{
auto
it
=
unlived_vars_
.
find
(
op
);
PADDLE_ENFORCE
(
it
!=
unlived_vars_
.
end
(),
string
::
Sprintf
(
"Expect %s in unlived_set, but Not Found."
,
op
->
Name
()));
return
it
->
second
;
return
it
->
second
;
}
const
std
::
vector
<
ir
::
Node
*>
ControlFlowGraph
::
Ops
()
const
{
return
ops_
;
}
const
std
::
vector
<
ir
::
Node
*>
&
ControlFlowGraph
::
Ops
()
const
{
return
ops_
;
}
std
::
vector
<
ir
::
Node
*>&
ControlFlowGraph
::
Ops
()
{
return
ops_
;
}
...
...
paddle/fluid/framework/details/memory_optimize_helper.h
浏览文件 @
69b1ebdf
...
...
@@ -92,10 +92,11 @@ class ControlFlowGraph {
void
RenameVarInCFGGraph
(
const
std
::
string
&
old_node
,
const
std
::
string
&
new_node
,
int
begin_idx
);
const
std
::
set
<
std
::
string
>
LiveIn
(
ir
::
Node
*
op
)
const
;
const
std
::
set
<
std
::
string
>
LiveOut
(
ir
::
Node
*
op
)
const
;
const
std
::
set
<
std
::
string
>
Use
(
ir
::
Node
*
op
)
const
;
const
std
::
vector
<
ir
::
Node
*>
Ops
()
const
;
const
std
::
set
<
std
::
string
>&
LiveIn
(
ir
::
Node
*
op
)
const
;
const
std
::
set
<
std
::
string
>&
LiveOut
(
ir
::
Node
*
op
)
const
;
const
std
::
set
<
std
::
string
>&
Use
(
ir
::
Node
*
op
)
const
;
const
std
::
set
<
std
::
string
>&
Unlived
(
ir
::
Node
*
op
)
const
;
const
std
::
vector
<
ir
::
Node
*>&
Ops
()
const
;
std
::
vector
<
ir
::
Node
*>&
Ops
();
// for ssa-graph nodes
...
...
@@ -117,6 +118,7 @@ class ControlFlowGraph {
VarSetMap
live_out_
;
VarSetMap
uses_
;
// op inputs
VarSetMap
defs_
;
// op outputs
std
::
unordered_map
<
ir
::
Node
*
,
std
::
set
<
std
::
string
>>
unlived_vars_
;
std
::
vector
<
ir
::
Node
*>
ops_
;
// op sequence by topology sort
};
...
...
paddle/fluid/framework/details/memory_optimize_helper_test.cc
浏览文件 @
69b1ebdf
...
...
@@ -228,9 +228,6 @@ TEST(CFGGraph, IRGraph) {
// prepare ir graph
auto
prog
=
FillProgramDesc
();
ir
::
Graph
graph
(
prog
);
const
std
::
vector
<
OpDesc
*>*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
prog
.
Block
(
0
).
AllOps
());
graph
.
Set
(
details
::
kAllOpDescs
,
all_op_descs
);
// take ownership
ControlFlowGraph
cfg
(
graph
);
cfg
.
LiveVariableAnalysis
();
...
...
@@ -256,9 +253,6 @@ TEST(CFGGraph, IRGraph) {
TEST
(
SortOpLikeDescOrder
,
NormalTest
)
{
auto
prog
=
FillProgramDesc
();
ir
::
Graph
graph
(
prog
);
const
std
::
vector
<
OpDesc
*>*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
prog
.
Block
(
0
).
AllOps
());
graph
.
Set
(
details
::
kAllOpDescs
,
all_op_descs
);
// take ownership
auto
nodes
=
SortOpLikeDescOrder
(
graph
);
auto
op_descs
=
prog
.
Block
(
0
).
AllOps
();
...
...
@@ -273,9 +267,6 @@ TEST(SortOpLikeDescOrder, NormalTest) {
TEST
(
SortOpLikeDescOrder
,
RemoveOpDesc
)
{
auto
prog
=
FillProgramDesc
();
ir
::
Graph
graph
(
prog
);
const
std
::
vector
<
OpDesc
*>*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
prog
.
Block
(
0
).
AllOps
());
graph
.
Set
(
details
::
kAllOpDescs
,
all_op_descs
);
// take ownership
auto
nodes
=
graph
.
Nodes
();
auto
op_descs
=
prog
.
Block
(
0
).
AllOps
();
ir
::
Node
*
found_node
=
nullptr
;
...
...
@@ -324,8 +315,6 @@ TEST(SortOpLikeDescOrder, RemoveOpDesc) {
// 3. add some op_desc
TEST
(
SortOpLikeDescOrder
,
AddOpDesc
)
{
auto
prog
=
FillProgramDesc
();
const
std
::
vector
<
OpDesc
*>*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
prog
.
Block
(
0
).
AllOps
());
ir
::
Graph
graph
(
prog
);
auto
find_node_in_graph
=
[
&
](
std
::
string
s
)
{
...
...
@@ -342,9 +331,7 @@ TEST(SortOpLikeDescOrder, AddOpDesc) {
// cached desc different with real one
// mimic the intermidiete pass modify the programdesc.
graph
.
Set
(
details
::
kAllOpDescs
,
all_op_descs
);
// take ownership
auto
op_descs
=
prog
.
Block
(
0
).
AllOps
();
std
::
vector
<
OpDesc
*>
op_descs
=
graph
.
OriginProgram
().
Block
(
0
).
AllOps
();
auto
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
prog
.
MutableBlock
(
0
)
->
Var
(
"d1"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
...
...
@@ -376,9 +363,6 @@ TEST(SortOpLikeDescOrder, AddOpDesc) {
TEST
(
SortOpLikeDescOrder
,
AddAndDeleteOpDesc
)
{
auto
prog
=
FillProgramDesc
();
ir
::
Graph
graph
(
prog
);
const
std
::
vector
<
OpDesc
*>*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
prog
.
Block
(
0
).
AllOps
());
graph
.
Set
(
details
::
kAllOpDescs
,
all_op_descs
);
// take ownership
auto
find_node_in_graph
=
[
&
](
std
::
string
s
)
{
ir
::
Node
*
ret
=
nullptr
;
...
...
@@ -392,8 +376,9 @@ TEST(SortOpLikeDescOrder, AddAndDeleteOpDesc) {
return
ret
;
};
std
::
vector
<
OpDesc
*>
op_descs
=
graph
.
OriginProgram
().
Block
(
0
).
AllOps
();
// remove sum node
auto
op_descs
=
prog
.
Block
(
0
).
AllOps
();
ir
::
Node
*
found_node
=
nullptr
;
auto
nodes
=
graph
.
Nodes
();
for
(
auto
node
:
nodes
)
{
...
...
@@ -454,9 +439,7 @@ TEST(SortOpLikeDescOrder, AddAndDeleteOpDesc) {
TEST
(
SortOpLikeDescOrder
,
AddAndReplaceOpDescInplace
)
{
auto
prog
=
FillProgramDesc
();
ir
::
Graph
graph
(
prog
);
const
std
::
vector
<
OpDesc
*>*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
prog
.
Block
(
0
).
AllOps
());
graph
.
Set
(
details
::
kAllOpDescs
,
all_op_descs
);
// take ownership
std
::
vector
<
OpDesc
*>
op_descs
=
graph
.
OriginProgram
().
Block
(
0
).
AllOps
();
auto
find_node_in_graph
=
[
&
](
std
::
string
s
)
{
ir
::
Node
*
ret
=
nullptr
;
...
...
@@ -470,7 +453,6 @@ TEST(SortOpLikeDescOrder, AddAndReplaceOpDescInplace) {
return
ret
;
};
auto
op_descs
=
prog
.
Block
(
0
).
AllOps
();
// add node
auto
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
prog
.
MutableBlock
(
0
)
->
Var
(
"d1"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
...
...
paddle/fluid/framework/details/memory_optimize_pass.cc
浏览文件 @
69b1ebdf
...
...
@@ -118,13 +118,11 @@ std::unique_ptr<ir::Graph> MemoryOptimizePass::ApplyImpl(
}
}
// fill the pool
for
(
auto
var
:
cfg_
->
LiveIn
(
op
))
{
if
(
cfg_
->
LiveOut
(
op
).
count
(
var
)
==
0
)
{
ir
::
Node
*
var_node
=
cfg_
->
GetNodeByName
(
var
,
op
);
if
(
var_node
==
nullptr
||
var_node
->
IsCtrlVar
())
continue
;
if
(
NodeCanReused
(
var_node
)
&&
!
pool_
.
Has
(
var_node
))
{
pool_
.
Insert
(
var_node
);
}
for
(
auto
&
var
:
cfg_
->
Unlived
(
op
))
{
ir
::
Node
*
var_node
=
cfg_
->
GetNodeByName
(
var
,
op
);
if
(
var_node
==
nullptr
||
var_node
->
IsCtrlVar
())
continue
;
if
(
NodeCanReused
(
var_node
)
&&
!
pool_
.
Has
(
var_node
))
{
pool_
.
Insert
(
var_node
);
}
}
}
...
...
@@ -337,4 +335,4 @@ void MemoryOptimizePass::RenameVarInGraphNode(const std::string& var,
REGISTER_PASS
(
memory_optimize_pass
,
paddle
::
framework
::
details
::
MemoryOptimizePass
)
.
RequireGraphAttr
(
paddle
::
framework
::
details
::
k
All
OpDescs
);
.
RequireGraphAttr
(
paddle
::
framework
::
details
::
k
StaleProgram
OpDescs
);
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
浏览文件 @
69b1ebdf
...
...
@@ -20,8 +20,7 @@ namespace framework {
namespace
details
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
ParallelSSAGraphExecutor
::
SeparateMultiDevicesGraph
(
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
{
ParallelSSAGraphExecutor
::
SeparateMultiDevicesGraph
(
ir
::
Graph
*
graph
)
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
graphs
.
reserve
(
places_
.
size
());
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
...
...
@@ -77,24 +76,18 @@ ParallelSSAGraphExecutor::SeparateMultiDevicesGraph(
ParallelSSAGraphExecutor
::
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
framework
::
ProgramDesc
&
main_prog
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
const
std
::
vector
<
platform
::
Place
>
&
places
,
ir
::
Graph
*
graph
)
:
strategy_
(
std
::
move
(
strategy
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
pool_
(
places
.
size
()
>=
2
?
new
::
ThreadPool
(
places
.
size
())
:
nullptr
),
places_
(
std
::
move
(
places
)),
main_prog_
(
main_prog
),
// TODO(Yancey1989): Copying graphs is not safely since it deleted the
// attrs.
graphs_
(
SeparateMultiDevicesGraph
(
std
::
move
(
graph
)
))
{
graphs_
(
SeparateMultiDevicesGraph
(
graph
))
{
PADDLE_ENFORCE_EQ
(
places_
.
size
(),
local_scopes_
.
size
());
auto
seq_allreduce_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"all_reduce_deps_pass"
);
seq_allreduce_pass
->
Erase
(
details
::
kAllOpDescs
);
seq_allreduce_pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
details
::
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_prog_
.
Block
(
0
).
AllOps
()));
for
(
size_t
i
=
0
;
i
<
graphs_
.
size
();
++
i
)
{
graphs_
[
i
]
=
seq_allreduce_pass
->
Apply
(
std
::
move
(
graphs_
[
i
]));
}
...
...
@@ -107,7 +100,7 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
<<
" to run the operators of the graph on each device."
;
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
executors_
.
emplace_back
(
new
details
::
ThreadedSSAGraphExecutor
(
strategy_
,
local_scopes_
,
{
places_
[
i
]},
std
::
move
(
graphs_
.
at
(
i
)
)));
strategy_
,
local_scopes_
,
{
places_
[
i
]},
graphs_
.
at
(
i
).
get
(
)));
}
}
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
浏览文件 @
69b1ebdf
...
...
@@ -31,8 +31,7 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
framework
::
ProgramDesc
&
main_prog
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
ir
::
Graph
*
graph
);
~
ParallelSSAGraphExecutor
()
final
=
default
;
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graphs_
[
0
];
}
...
...
@@ -41,13 +40,12 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
private:
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
SeparateMultiDevicesGraph
(
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
ir
::
Graph
*
graph
);
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
{
nullptr
};
std
::
vector
<
platform
::
Place
>
places_
;
framework
::
ProgramDesc
main_prog_
;
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs_
;
std
::
vector
<
std
::
unique_ptr
<
details
::
ThreadedSSAGraphExecutor
>>
executors_
;
...
...
paddle/fluid/framework/details/sequential_execution_pass.cc
浏览文件 @
69b1ebdf
...
...
@@ -40,7 +40,7 @@ std::unique_ptr<ir::Graph> SequentialExecutionPass::ApplyImpl(
static
std
::
unordered_set
<
std
::
string
>
skip_dist_ops
{
"send"
,
"recv"
,
"send_barrier"
,
"fetch_barrier"
};
auto
&
ops
=
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAll
OpDescs
);
auto
&
ops
=
graph
->
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kStaleProgram
OpDescs
);
std
::
vector
<
ir
::
Node
*>
op_node_list
;
op_node_list
.
reserve
(
ops
.
size
());
...
...
@@ -107,4 +107,4 @@ std::unique_ptr<ir::Graph> SequentialExecutionPass::ApplyImpl(
REGISTER_PASS
(
sequential_execution_pass
,
paddle
::
framework
::
details
::
SequentialExecutionPass
)
.
Require
PassAttr
(
paddle
::
framework
::
details
::
kAll
OpDescs
);
.
Require
GraphAttr
(
paddle
::
framework
::
details
::
kStaleProgram
OpDescs
);
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
69b1ebdf
...
...
@@ -23,9 +23,8 @@ namespace framework {
namespace
details
{
ThreadedSSAGraphExecutor
::
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
:
graph_
(
std
::
move
(
graph
)),
const
std
::
vector
<
platform
::
Place
>
&
places
,
ir
::
Graph
*
graph
)
:
graph_
(
graph
),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
local_scopes_
(
local_scopes
),
...
...
@@ -110,7 +109,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for
(
auto
&
run_op_future
:
run_op_futures_
)
{
run_op_future
.
wait
();
}
ClearFetchOp
(
graph_
.
get
()
,
&
fetch_ops
);
ClearFetchOp
(
graph_
,
&
fetch_ops
);
exception_holder_
.
ReThrow
();
}
else
{
continue
;
...
...
@@ -135,7 +134,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
}
PADDLE_ENFORCE
(
ready_ops
.
empty
());
// Wait FetchOps.
ClearFetchOp
(
graph_
.
get
()
,
&
fetch_ops
);
ClearFetchOp
(
graph_
,
&
fetch_ops
);
return
fetch_data
;
}
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
69b1ebdf
...
...
@@ -41,7 +41,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
ir
::
Graph
*
graph
);
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graph_
;
}
// Run a SSAGraph by a thread pool
...
...
@@ -55,7 +55,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details
::
OpHandleBase
*
op
);
private:
std
::
unique_ptr
<
ir
::
Graph
>
graph_
;
ir
::
Graph
*
graph_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
...
...
paddle/fluid/framework/ir/graph.cc
浏览文件 @
69b1ebdf
...
...
@@ -76,6 +76,9 @@ std::map<std::string, std::vector<ir::Node *>> Graph::InitFromProgram(
var
->
inputs
.
push_back
(
node
);
}
}
Set
<
const
std
::
vector
<
OpDesc
*>>
(
details
::
kStaleProgramOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
program
.
Block
(
0
).
AllOps
()));
return
var_nodes
;
}
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
69b1ebdf
...
...
@@ -31,7 +31,7 @@ namespace details {
// This attr is not recommended, because the graph should not dependence
// the program once it is built.
constexpr
char
k
AllOpDescs
[]
=
"all
_op_descs"
;
constexpr
char
k
StaleProgramOpDescs
[]
=
"stale_program
_op_descs"
;
}
// namespace details
namespace
ir
{
...
...
@@ -195,6 +195,12 @@ class Graph {
return
nullptr
;
}
// Returns reference to the original program.
// WARN: After a series of passes, the current graph can be quite
// different from OriginProgram. Caller shouldn't assume much from
// the returned OriginProgram.
const
ProgramDesc
&
OriginProgram
()
const
{
return
program_
;
}
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
...
...
paddle/fluid/framework/ir/mkldnn/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
浏览文件 @
69b1ebdf
...
...
@@ -44,10 +44,14 @@ struct TestIsReachable {
using
func
=
std
::
function
<
bool
(
const
std
::
string
&
,
const
std
::
string
&
)
>
;
auto
operator
()(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
)
->
func
{
auto
find_node
=
[](
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
,
const
std
::
string
&
name
)
->
Node
*
{
auto
hash
=
[](
const
Node
*
node
)
->
std
::
string
{
return
node
->
Name
()
+
std
::
to_string
(
node
->
id
());
};
auto
find_node
=
[
&
](
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
,
const
std
::
string
&
name
)
->
Node
*
{
for
(
auto
&
node
:
GraphTraits
::
DFS
(
*
graph
))
{
if
(
name
==
node
.
Name
(
))
{
if
(
name
==
hash
(
&
node
))
{
return
&
node
;
}
}
...
...
@@ -55,13 +59,17 @@ struct TestIsReachable {
return
nullptr
;
};
return
[
&
](
std
::
string
from
,
const
std
::
string
to
)
->
bool
{
// update the from and to strings to hashed equivs in loop from graph traits
return
[
&
](
std
::
string
from
,
std
::
string
to
)
->
bool
{
if
(
from
==
to
)
return
true
;
std
::
map
<
std
::
string
,
bool
>
visited
;
for
(
auto
&
node
:
GraphTraits
::
DFS
(
*
graph
))
{
visited
[
node
.
Name
()]
=
false
;
auto
hashed
=
hash
(
&
node
);
if
(
node
.
Name
()
==
from
)
from
=
hashed
;
if
(
node
.
Name
()
==
to
)
to
=
hashed
;
visited
[
hashed
]
=
false
;
}
visited
[
from
]
=
true
;
...
...
@@ -72,15 +80,15 @@ struct TestIsReachable {
while
(
!
queue
.
empty
())
{
auto
cur
=
find_node
(
graph
,
queue
.
front
());
queue
.
pop_front
();
if
(
cur
==
nullptr
)
return
false
;
for
(
auto
n
:
cur
->
outputs
)
{
if
(
n
->
Name
()
==
to
)
return
true
;
auto
hashed_name
=
hash
(
n
);
if
(
hashed_name
==
to
)
return
true
;
if
(
!
visited
[
n
->
Name
()
])
{
visited
[
n
->
Name
()
]
=
true
;
queue
.
push_back
(
n
->
Name
()
);
if
(
!
visited
[
hashed_name
])
{
visited
[
hashed_name
]
=
true
;
queue
.
push_back
(
hashed_name
);
}
}
}
...
...
@@ -166,6 +174,28 @@ TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionAsYWithElementwiseAddRelu) {
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionProjectionAsYWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
},
{
"bias"
,
"weights"
,
"bias2"
,
"weights2"
});
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
// right branch
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
// left branch
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Bias"
,
"bias2"
},
{
"Filter"
,
"weights2"
}},
{
"Output"
,
"f"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"f"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
2
);
}
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsYWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
69b1ebdf
...
...
@@ -184,9 +184,10 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
ParallelExecutor
::
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
ir
::
Graph
*
graph
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
member_
->
use_cuda_
=
exec_strategy
.
use_cuda_
;
...
...
@@ -216,11 +217,13 @@ ParallelExecutor::ParallelExecutor(
}
}
std
::
unique_ptr
<
ir
::
Graph
>
temp_owned_graph
(
graph
);
// FIXME(Yancey1989): parallel graph mode get better performance
// in GPU allreduce distributed training. Need an elegant way to
// choice the execution strategy.
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
main_program
,
exec_strategy
,
build_strategy
);
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
*
temp_owned_graph
,
exec_strategy
,
build_strategy
);
if
(
build_strategy
.
enable_parallel_graph_
)
VLOG
(
0
)
<<
"The Executor would execute the graph by ParallelGraph "
"Execution which can get better performance,"
...
...
@@ -254,26 +257,32 @@ ParallelExecutor::ParallelExecutor(
if
(
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
BCastParamsToDevices
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std
::
unique_ptr
<
ir
::
Graph
>
graph
;
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
#else
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
VLOG
(
10
)
<<
"Eager Deletion Threshold "
<<
static_cast
<
float
>
(
max_memory_size
)
/
(
1
<<
30
);
if
(
max_memory_size
>=
0
)
{
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
));
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
temp_owned_graph
),
static_cast
<
size_t
>
(
max_memory_size
))
.
release
();
}
else
{
graph
=
temp_owned_graph
.
release
();
}
// Step 3. Create vars in each scope. Passes may also create new vars.
...
...
@@ -308,8 +317,7 @@ ParallelExecutor::ParallelExecutor(
// TODO(Yancey1989): Remove passing in the main_program when
// allreduce_seq_pass doesn't need it as the attr.
member_
->
executor_
.
reset
(
new
details
::
ParallelSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
main_program
,
std
::
move
(
graph
)));
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
graph
));
#else
PADDLE_THROW
(
"Paddle should be compiled with CUDA for ParallelGraph Execution."
);
...
...
@@ -317,12 +325,10 @@ ParallelExecutor::ParallelExecutor(
}
else
{
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
)));
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
graph
));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
std
::
move
(
graph
)));
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
graph
));
}
}
...
...
@@ -452,24 +458,33 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
}
}
ParallelExecutor
::~
ParallelExecutor
()
{
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
delete
member_
;
}
bool
ParallelExecutor
::
EnableParallelGraphExecution
(
const
ProgramDesc
&
main_program
,
const
ExecutionStrategy
&
exec_strategy
,
const
ir
::
Graph
&
graph
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
{
if
(
!
FLAGS_enable_parallel_graph
)
return
false
;
bool
enable_parallel_graph
=
true
;
// TODO(Yancey1989): support sparse update in ParallelGraph mode.
for
(
auto
&
var_desc
:
main_program
.
Block
(
0
).
AllVars
())
{
if
(
var_desc
->
GetType
()
==
proto
::
VarType
::
SELECTED_ROWS
)
{
enable_parallel_graph
=
false
;
}
}
// TODO(Yancey1989): support pserver mode
for
(
auto
&
op_desc
:
main_program
.
Block
(
0
).
AllOps
())
{
if
(
op_desc
->
Type
()
==
"send"
||
op_desc
->
Type
()
==
"recv"
)
{
enable_parallel_graph
=
false
;
break
;
for
(
ir
::
Node
*
node
:
graph
.
Nodes
())
{
if
(
node
->
IsVar
()
&&
node
->
Var
())
{
// TODO(Yancey1989): support sparse update in ParallelGraph mode.
if
(
node
->
Var
()
->
GetType
()
==
proto
::
VarType
::
SELECTED_ROWS
)
{
enable_parallel_graph
=
false
;
break
;
}
}
else
if
(
node
->
IsOp
()
&&
node
->
Op
())
{
// TODO(Yancey1989): support pserver mode
if
(
node
->
Op
()
->
Type
()
==
"send"
||
node
->
Op
()
->
Type
()
==
"recv"
)
{
enable_parallel_graph
=
false
;
break
;
}
}
}
...
...
@@ -481,13 +496,6 @@ bool ParallelExecutor::EnableParallelGraphExecution(
return
enable_parallel_graph
;
}
ParallelExecutor
::~
ParallelExecutor
()
{
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
delete
member_
;
}
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
69b1ebdf
...
...
@@ -46,11 +46,11 @@ class ParallelExecutor {
public:
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
);
const
BuildStrategy
&
build_strategy
,
ir
::
Graph
*
graph
);
~
ParallelExecutor
();
...
...
@@ -71,7 +71,7 @@ class ParallelExecutor {
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
bool
EnableParallelGraphExecution
(
const
ProgramDesc
&
main_program
,
bool
EnableParallelGraphExecution
(
const
ir
::
Graph
&
graph
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
;
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
69b1ebdf
...
...
@@ -114,23 +114,23 @@ class VarBase {
public:
VarBase
()
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
true
))
{}
// Owns `var` and `grad`
explicit
VarBase
(
bool
stop_gradient
)
:
VarBase
(
new
framework
::
Variable
(),
stop_gradient
?
nullptr
:
new
VarBase
(
true
),
stop_gradient
)
{}
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
)
:
VarBase
(
var
,
grad
,
false
)
{}
private:
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
false
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
explicit
VarBase
(
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
var_
(
new
framework
::
Variable
()),
grads_
(
stop_gradient
?
nullptr
:
new
VarBase
(
true
)),
stop_gradient_
(
stop_gradient
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
public:
virtual
~
VarBase
()
{
if
(
var_
)
{
delete
var_
;
...
...
@@ -141,11 +141,13 @@ class VarBase {
}
}
OpBase
*
PreOp
()
const
{
return
pre_op_
;
}
int
PreOpOutIdx
()
const
{
return
pre_op_out_idx_
;
}
inline
OpBase
*
PreOp
()
const
{
return
pre_op_
;
}
in
line
in
t
PreOpOutIdx
()
const
{
return
pre_op_out_idx_
;
}
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
}
bool
IsStopGradient
()
const
{
return
stop_gradient_
;
}
inline
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
}
inline
bool
IsStopGradient
()
const
{
return
stop_gradient_
;
}
void
RunBackward
();
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
69b1ebdf
...
...
@@ -14,6 +14,8 @@
#include "paddle/fluid/imperative/tracer.h"
#include <set>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -66,16 +68,18 @@ platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
return
result
;
}
void
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
std
::
set
<
std
::
string
>
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferVarType
(
block
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
...
...
@@ -92,7 +96,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
invars
.
emplace_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
PreOp
())
{
if
(
inp
->
PreOp
()
&&
!
inp
->
IsStopGradient
()
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
PreOp
());
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
PreOpOutIdx
());
}
else
{
...
...
@@ -142,6 +146,8 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
framework
::
ExecutionContext
(
prepared_op
.
op
,
scope
,
*
prepared_op
.
dev_ctx
,
prepared_op
.
ctx
,
prepared_op
.
kernel_configs
));
std
::
set
<
std
::
string
>
vars_saved_for_backward
;
if
(
!
stop_gradient
)
{
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
());
...
...
@@ -161,6 +167,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
vars_saved_for_backward
.
insert
(
it
.
first
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
...
...
@@ -194,6 +201,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
}
op
->
block_
=
block
;
return
vars_saved_for_backward
;
}
std
::
vector
<
VarBase
*>
Tracer
::
PyTrace
(
OpBase
*
op
,
...
...
@@ -203,7 +211,7 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
op
->
input_vars_
[
PyLayer
::
kFwdInp
]
=
inputs
;
op
->
output_vars_
[
PyLayer
::
kFwdOut
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
if
(
inp
->
PreOp
())
{
if
(
inp
->
PreOp
()
&&
!
inp
->
IsStopGradient
()
)
{
op
->
pre_ops_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOp
());
op
->
pre_ops_out_idx_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOpOutIdx
());
}
else
{
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
69b1ebdf
...
...
@@ -15,6 +15,7 @@
#pragma once
#include <map>
#include <set>
#include <string>
#include <vector>
...
...
@@ -43,10 +44,11 @@ class Tracer {
virtual
~
Tracer
()
{}
void
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
std
::
set
<
std
::
string
>
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
=
false
);
...
...
paddle/fluid/operators/alloc_continuous_space_op.cc
0 → 100644
浏览文件 @
69b1ebdf
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
static
framework
::
proto
::
VarType
::
Type
kDefaultDtype
=
framework
::
proto
::
VarType
::
Type
::
VarType_Type_BOOL
;
template
<
typename
DeviceContext
,
typename
T
>
class
AllocContinuousSpaceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
in_var_names
=
context
.
Inputs
(
"Input"
);
auto
&
out_var_names
=
context
.
Outputs
(
"Output"
);
auto
&
in_vars
=
context
.
MultiInputVar
(
"Input"
);
auto
out_vars
=
context
.
MultiOutputVar
(
"Output"
);
PADDLE_ENFORCE_GT
(
in_var_names
.
size
(),
static_cast
<
size_t
>
(
0
));
PADDLE_ENFORCE_EQ
(
in_var_names
.
size
(),
out_var_names
.
size
());
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
++
i
)
{
// Only support LoDTensor
PADDLE_ENFORCE_NOT_NULL
(
in_vars
[
i
],
"%s should not be nullptr,"
,
in_var_names
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
out_vars
[
i
],
"%s should not be nullptr,"
,
out_var_names
[
i
]);
PADDLE_ENFORCE
(
in_vars
[
i
]
->
IsType
<
framework
::
LoDTensor
>
());
PADDLE_ENFORCE
(
out_vars
[
i
]
->
IsType
<
framework
::
LoDTensor
>
());
}
auto
in_tensors
=
context
.
MultiInput
<
framework
::
LoDTensor
>
(
"Input"
);
if
(
context
.
Attr
<
bool
>
(
"check_name"
))
{
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
in_var_names
[
i
],
out_var_names
[
i
]);
}
}
else
{
// Init the output as input
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
++
i
)
{
out_vars
[
i
]
->
GetMutable
<
framework
::
LoDTensor
>
()
->
Resize
(
in_tensors
[
i
]
->
dims
());
}
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// Get numel and dtype
size_t
numel
=
0
;
auto
dtype
=
kDefaultDtype
;
GetMemSizeAndDtype
(
in_tensors
,
in_var_names
,
&
numel
,
&
dtype
);
// Alloc the continuous space
auto
fused_tensor
=
context
.
Output
<
framework
::
LoDTensor
>
(
"FusedOutput"
);
fused_tensor
->
Resize
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
numel
)}))
.
mutable_data
(
context
.
GetPlace
(),
dtype
);
// Init the continuous space
auto
out_tensors
=
context
.
MultiOutput
<
framework
::
LoDTensor
>
(
"Output"
);
int64_t
offset
=
0
;
if
(
context
.
Attr
<
bool
>
(
"copy_data"
))
{
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
++
i
)
{
int64_t
len
=
out_tensors
[
i
]
->
numel
();
auto
sub_tensor
=
fused_tensor
->
Slice
(
offset
,
offset
+
len
);
offset
+=
len
;
framework
::
TensorCopy
(
*
out_tensors
[
i
],
context
.
GetPlace
(),
dev_ctx
,
&
sub_tensor
);
}
}
else
if
(
context
.
Attr
<
bool
>
(
"set_constant"
))
{
math
::
SetConstant
<
DeviceContext
,
T
>
set_constant
;
set_constant
(
dev_ctx
,
fused_tensor
,
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"constant"
)));
}
// Make the outputs point to the continuous space.
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
out_tensors
.
size
();
++
i
)
{
int64_t
len
=
out_tensors
[
i
]
->
numel
();
auto
dim
=
out_tensors
[
i
]
->
dims
();
out_tensors
[
i
]
->
ShareDataWith
(
fused_tensor
->
Slice
(
offset
,
offset
+
len
))
.
Resize
(
dim
);
offset
+=
len
;
VLOG
(
10
)
<<
"alloc_space_for_vars: output("
<<
out_var_names
[
i
]
<<
") ,dim:("
<<
dim
<<
")"
<<
" Address: "
<<
out_tensors
[
i
]
->
data
<
void
>
();
}
}
void
GetMemSizeAndDtype
(
const
std
::
vector
<
const
framework
::
LoDTensor
*>
&
lod_tensors
,
const
std
::
vector
<
std
::
string
>
var_names
,
size_t
*
numel
,
framework
::
proto
::
VarType
::
Type
*
dtype
)
const
{
PADDLE_ENFORCE_EQ
(
lod_tensors
.
size
(),
var_names
.
size
());
*
numel
=
0
;
for
(
size_t
i
=
0
;
i
<
var_names
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
lod_tensors
[
i
]
->
IsInitialized
(),
"%s is not initialized."
,
var_names
[
i
]);
auto
p_dtype
=
lod_tensors
[
i
]
->
type
();
if
(
*
dtype
==
kDefaultDtype
)
{
PADDLE_ENFORCE_NE
(
p_dtype
,
kDefaultDtype
,
"%s's type should not be %s."
,
var_names
[
i
],
kDefaultDtype
);
*
dtype
=
p_dtype
;
}
PADDLE_ENFORCE_EQ
(
p_dtype
,
*
dtype
,
"Input vars is not equal."
);
auto
size
=
lod_tensors
[
i
]
->
numel
();
PADDLE_ENFORCE_GT
(
size
,
0
);
VLOG
(
10
)
<<
"alloc_space_for_vars: input("
<<
var_names
[
i
]
<<
") ,dim:("
<<
lod_tensors
[
i
]
->
dims
()
<<
")"
;
*
numel
+=
size
;
}
}
};
class
AllocContinuousSpaceOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
};
class
AllocContinuousSpaceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Input"
,
"(vector<LoDTensor>) The input tensors of"
" alloc_continuous_space operator."
)
.
AsDuplicable
();
AddOutput
(
"Output"
,
"(vector<LoDTensor>) The output "
"tensors of alloc_continuous_space operator. And the address "
"of output tensors are continuous, they are sliced from the "
"tensor of FusedOutput."
)
.
AsDuplicable
();
AddOutput
(
"FusedOutput"
,
"(LoDTensor) The output tensor "
"of alloc_continuous_space operator. And the tensors of"
" Output is sliced from the tensor of FusedOutput."
);
AddAttr
<
bool
>
(
"copy_data"
,
"Whether to copy the Input value to Output."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"set_constant"
,
"Whether to set the Output with a constant value."
)
.
SetDefault
(
false
);
AddAttr
<
float
>
(
"constant"
,
"If set_constant is true, the constant value will be used "
"to set the Output."
)
.
SetDefault
(
0.0
);
AddAttr
<
bool
>
(
"check_name"
,
"Whether to check the name of Input and Output to ensure "
"they are the same separately."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AllocContinuousSpace Operator.
alloc_continuous_space is used to make the address of Output
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
alloc_continuous_space allows copying the value of Input to Output, or
setting the Output with a constant value.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
alloc_continuous_space
,
paddle
::
operators
::
AllocContinuousSpaceOp
,
paddle
::
operators
::
AllocContinuousSpaceOpMaker
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CPU_KERNEL
(
alloc_continuous_space
,
ops
::
AllocContinuousSpaceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
AllocContinuousSpaceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
AllocContinuousSpaceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL
(
alloc_continuous_space
,
ops
::
AllocContinuousSpaceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
AllocContinuousSpaceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
AllocContinuousSpaceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
#endif
paddle/fluid/operators/detection/prior_box_op.h
浏览文件 @
69b1ebdf
...
...
@@ -172,6 +172,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
framework
::
make_ddim
({
1
,
static_cast
<
int
>
(
variances
.
size
())}),
ctx
.
GetPlace
());
auto
var_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
var_t
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
size_t
i
=
0
;
i
<
variances
.
size
();
++
i
)
{
var_et
(
0
,
i
)
=
variances
[
i
];
}
...
...
@@ -181,8 +185,15 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
vars
->
Resize
({
box_num
,
static_cast
<
int
>
(
variances
.
size
())});
auto
e_vars
=
framework
::
EigenMatrix
<
T
,
Eigen
::
RowMajor
>::
From
(
*
vars
);
e_vars
=
var_et
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
box_num
,
1
));
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
e_vars
(
i
,
j
)
=
variances
[
j
];
}
}
vars
->
Resize
(
var_dim
);
}
};
// namespace operators
...
...
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
浏览文件 @
69b1ebdf
...
...
@@ -79,15 +79,6 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
memory
::
format
input_format
=
input0
.
format
();
if
(
src_tz
.
size
()
==
1
&&
(
input_format
==
memory
::
format
::
nchw
||
input_format
==
memory
::
format
::
nhwc
))
{
input_format
=
memory
::
format
::
x
;
}
if
(
src_tz
.
size
()
==
2
&&
(
input_format
==
memory
::
format
::
nchw
||
input_format
==
memory
::
format
::
nhwc
))
{
input_format
=
memory
::
format
::
nc
;
}
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
PADDLE_ENFORCE
(
in_vars
[
i
]
->
IsType
<
LoDTensor
>
(),
"all inputs must be all LoDTensors"
);
...
...
@@ -147,105 +138,10 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
output_format
);
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(@mozga-intel) Add MKLDNN SelectedRows support
std
::
unique_ptr
<
framework
::
SelectedRows
>
in0
;
if
(
in_place
)
{
// If is in_place, we store the input[0] to in0
auto
&
in_sel0
=
in_vars
[
0
]
->
Get
<
SelectedRows
>
();
auto
&
rows
=
in_sel0
.
rows
();
in0
.
reset
(
new
framework
::
SelectedRows
(
rows
,
in_sel0
.
height
()));
in0
->
mutable_value
()
->
ShareDataWith
(
in_sel0
.
value
());
}
auto
get_selected_row
=
[
&
](
size_t
i
)
->
const
SelectedRows
&
{
if
(
i
==
0
&&
in0
)
{
return
*
in0
;
}
else
{
return
in_vars
[
i
]
->
Get
<
SelectedRows
>
();
}
};
auto
*
out
=
ctx
.
Output
<
SelectedRows
>
(
"Out"
);
out
->
mutable_rows
()
->
clear
();
auto
*
out_value
=
out
->
mutable_value
();
// Runtime InferShape
size_t
first_dim
=
0
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
auto
&
sel_row
=
get_selected_row
(
i
);
first_dim
+=
sel_row
.
rows
().
size
();
}
std
::
vector
<
int64_t
>
in_dim
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
auto
&
sel_row
=
get_selected_row
(
i
);
if
(
sel_row
.
rows
().
size
()
>
0
)
{
in_dim
=
framework
::
vectorize
(
sel_row
.
value
().
dims
());
break
;
}
}
if
(
in_dim
.
empty
())
{
VLOG
(
3
)
<<
"WARNING: all the inputs are empty"
;
in_dim
=
framework
::
vectorize
(
get_selected_row
(
N
-
1
).
value
().
dims
());
}
else
{
in_dim
[
0
]
=
static_cast
<
int64_t
>
(
first_dim
);
}
in_dim
[
0
]
=
static_cast
<
int64_t
>
(
first_dim
);
out_value
->
Resize
(
framework
::
make_ddim
(
in_dim
));
out_value
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// if all the input sparse vars are empty, no need to
// merge these vars.
if
(
first_dim
==
0UL
)
{
return
;
}
math
::
SelectedRowsAddTo
<
CPUDeviceContext
,
T
>
functor
;
int64_t
offset
=
0
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
auto
&
sel_row
=
get_selected_row
(
i
);
if
(
sel_row
.
rows
().
size
()
==
0
)
{
continue
;
}
PADDLE_ENFORCE_EQ
(
out
->
height
(),
sel_row
.
height
());
functor
(
ctx
.
template
device_context
<
CPUDeviceContext
>(),
sel_row
,
offset
,
out
);
offset
+=
sel_row
.
value
().
numel
();
}
}
else
if
(
out_var
->
IsType
<
framework
::
LoDTensorArray
>
())
{
// TODO(@mozga-intel) Add MKLDNN LoDTensorArray support
auto
&
out_array
=
*
out_var
->
GetMutable
<
framework
::
LoDTensorArray
>
();
for
(
size_t
i
=
in_place
?
1
:
0
;
i
<
in_vars
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
in_vars
[
i
]
->
IsType
<
framework
::
LoDTensorArray
>
(),
"Only support all inputs are TensorArray"
);
auto
&
in_array
=
in_vars
[
i
]
->
Get
<
framework
::
LoDTensorArray
>
();
for
(
size_t
i
=
0
;
i
<
in_array
.
size
();
++
i
)
{
if
(
in_array
[
i
].
numel
()
!=
0
)
{
if
(
i
>=
out_array
.
size
())
{
out_array
.
resize
(
i
+
1
);
}
if
(
out_array
[
i
].
numel
()
==
0
)
{
framework
::
TensorCopy
(
in_array
[
i
],
in_array
[
i
].
place
(),
ctx
.
device_context
(),
&
out_array
[
i
]);
out_array
[
i
].
set_lod
(
in_array
[
i
].
lod
());
}
else
{
PADDLE_ENFORCE
(
out_array
[
i
].
lod
()
==
in_array
[
i
].
lod
());
auto
in
=
EigenVector
<
T
>::
Flatten
(
in_array
[
i
]);
auto
result
=
EigenVector
<
T
>::
Flatten
(
out_array
[
i
]);
result
.
device
(
*
ctx
.
template
device_context
<
MKLDNNDeviceContext
>()
.
eigen_device
())
=
result
+
in
;
}
}
}
}
}
else
{
PADDLE_THROW
(
"Unexpected branch, output variable type is %s"
,
framework
::
ToTypeName
(
out_var
->
Type
()));
}
else
{
// Fallback to naive version
// TODO(@mozga-intel) Add MKLDNN SelectedRows & LoDTensorArray support
SumKernel
<
CPUDeviceContext
,
T
>
reference_kernel
;
reference_kernel
.
Compute
(
ctx
);
}
}
};
...
...
paddle/fluid/platform/event.h
浏览文件 @
69b1ebdf
...
...
@@ -14,6 +14,9 @@ limitations under the License. */
#pragma once
#include <string>
#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
#endif
namespace
paddle
{
namespace
platform
{
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
69b1ebdf
...
...
@@ -34,8 +34,8 @@ void BindTracer(pybind11::module* m) {
framework
::
BlockDesc
*
block
,
const
platform
::
CPUPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
return
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
})
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
...
...
@@ -44,8 +44,8 @@ void BindTracer(pybind11::module* m) {
framework
::
BlockDesc
*
block
,
const
platform
::
CUDAPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
return
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
})
.
def
(
"py_trace"
,
&
imperative
::
Tracer
::
PyTrace
,
pybind11
::
return_value_policy
::
take_ownership
);
...
...
paddle/fluid/pybind/ir.cc
浏览文件 @
69b1ebdf
...
...
@@ -101,7 +101,8 @@ void BindGraph(py::module *m) {
[](
Graph
&
self
,
Node
&
node
)
{
return
self
.
RemoveNode
(
&
node
);
})
.
def
(
"retrieve_node"
,
&
Graph
::
RetrieveNode
,
return_value_policy
::
reference
)
.
def
(
"resolve_hazard"
,
&
Graph
::
ResolveHazard
);
.
def
(
"resolve_hazard"
,
&
Graph
::
ResolveHazard
)
.
def
(
"origin_program_desc"
,
&
Graph
::
OriginProgram
);
}
void
BindNode
(
py
::
module
*
m
)
{
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
69b1ebdf
...
...
@@ -189,6 +189,8 @@ void BindBlockDesc(pybind11::module *m) {
return
self
.
HasVar
(
name
);
},
pybind11
::
return_value_policy
::
reference
)
.
def
(
"_clear_block"
,
[](
pd
::
BlockDesc
&
self
)
{
return
self
.
Clear
();
},
pybind11
::
return_value_policy
::
reference
)
.
def
(
"_rename_var"
,
[](
pd
::
BlockDesc
&
self
,
const
pybind11
::
bytes
&
byte_name
,
const
pybind11
::
bytes
&
byte_name_new
)
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
69b1ebdf
...
...
@@ -551,9 +551,9 @@ All parameter, weight, gradient are variables in Paddle.
m
,
"LoDTensorBlockingQueue"
,
""
)
.
def
(
"push"
,
[](
LoDTensorBlockingQueue
&
self
,
std
::
vector
<
framework
::
LoDTensor
>
&
lod_tensor_vec
)
{
const
std
::
vector
<
framework
::
LoDTensor
>
&
lod_tensor_vec
)
{
pybind11
::
gil_scoped_release
release
;
return
self
.
Push
(
std
::
move
(
lod_tensor_vec
)
);
return
self
.
Push
(
lod_tensor_vec
);
})
.
def
(
"size"
,
&
LoDTensorBlockingQueue
::
Size
)
.
def
(
"capacity"
,
&
LoDTensorBlockingQueue
::
Cap
)
...
...
@@ -994,6 +994,7 @@ All parameter, weight, gradient are variables in Paddle.
[](
ir
::
PassBuilder
&
self
,
size_t
idx
)
{
self
.
RemovePass
(
idx
);
});
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
,
R"DOC(
ExecutionStrategy allows the user to more preciously control how to run
...
...
@@ -1231,9 +1232,9 @@ All parameter, weight, gradient are variables in Paddle.
cannot be updated after being finalized.)DOC"
);
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
ProgramDesc
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&
>
())
const
std
::
unordered_set
<
std
::
string
>
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&
,
ir
::
Graph
*
>
())
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
// of vec<Scope*> will be freed by Python GC. We can only return Scope*
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
69b1ebdf
...
...
@@ -444,6 +444,7 @@ function assert_api_spec_approvals() {
"paddle/fluid/framework/ir/node.h"
"paddle/fluid/framework/ir/graph.h"
"paddle/fluid/framework/framework.proto"
"python/paddle/fluid/compiler.py"
"paddle/fluid/operators/distributed/send_recv.proto.in"
)
for
API_FILE
in
${
API_FILES
[*]
}
;
do
API_CHANGE
=
`
git diff
--name-only
upstream/
$BRANCH
|
grep
"
${
API_FILE
}
"
||
true
`
...
...
python/paddle/fluid/compiler.py
浏览文件 @
69b1ebdf
...
...
@@ -17,10 +17,10 @@ import os
import
six
import
sys
from
..
import
compat
as
cpt
from
.
import
framework
from
.framework
import
cuda_places
,
cpu_places
from
.
import
core
from
.
import
framework
__all__
=
[
'CompiledProgram'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
...
...
@@ -38,7 +38,7 @@ def _place_obj(place):
class
CompiledProgram
(
object
):
"""
Compiles
a Program
for execution.
Compiles
to Graph
for execution.
1. Users first create the program with layers.
2. Optionally, users use CompiledProgram to optimize the program before run.
...
...
@@ -53,7 +53,7 @@ class CompiledProgram(object):
Example:
.. code-block:: python
place = fluid.CUDAPlace(0) if use_
cuda
else fluid.CPUPlace()
place = fluid.CUDAPlace(0) if use_
gpu
else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
...
...
@@ -64,11 +64,25 @@ class CompiledProgram(object):
fetch_list=[loss.name])
Args:
program: Program instance that contains the model logic.
program_or_graph (Graph|Program): If it's Program, it will be first
lowered to a graph for further optimizations. If it's a graph
(potentially optimized before), it will be directly used for
further optimizations. Note: graph is only supported when compiled
with with_data_parallel option.
"""
def
__init__
(
self
,
program
):
self
.
_program
=
program
def
__init__
(
self
,
program_or_graph
):
if
isinstance
(
program_or_graph
,
core
.
Graph
):
self
.
_graph
=
program_or_graph
self
.
_program
=
None
elif
isinstance
(
program_or_graph
,
framework
.
Program
):
self
.
_graph
=
core
.
Graph
(
program_or_graph
.
desc
)
self
.
_program
=
program_or_graph
else
:
raise
ValueError
(
"Wrong program_to_graph type: %s"
%
type
(
program_or_graph
))
self
.
_program_desc
=
self
.
_graph
.
origin_program_desc
()
self
.
_scope
=
None
self
.
_place
=
None
self
.
_executor
=
None
...
...
@@ -110,6 +124,7 @@ class CompiledProgram(object):
self
"""
assert
not
self
.
_is_data_parallel
,
"Already compiled with parallel."
assert
not
self
.
_is_inference
,
"Cannot compile both data parallel and inference"
self
.
_is_data_parallel
=
True
self
.
_build_strategy
=
build_strategy
self
.
_exec_strategy
=
exec_strategy
...
...
@@ -137,11 +152,13 @@ class CompiledProgram(object):
Returns:
self
"""
assert
not
self
.
_is_data_parallel
,
"Cannot compile both data parallel and inference"
assert
not
self
.
_is_inference
,
"Already compiled with inference"
assert
any
([
isinstance
(
config
,
InferNativeConfig
),
isinstance
(
config
,
InferAnalysisConfig
)
])
self
.
_is_data_parallel
=
False
self
.
_is_inference
=
True
self
.
_infer_config
=
config
return
self
...
...
@@ -185,37 +202,41 @@ class CompiledProgram(object):
else
:
self
.
_exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
2
trainers_endpoints
=
self
.
_program
.
_trainers_endpoints
# FIXME(dzhwinter): enable_inplace should be after memory_optimize
# if turn on python memory optimize, turn off the inplace_pass.
if
self
.
_build_strategy
.
memory_optimize
is
None
:
self
.
_build_strategy
.
memory_optimize
=
False
if
self
.
_program
.
_is_mem_optimized
else
True
self
.
_build_strategy
.
memory_optimize
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
if
self
.
_build_strategy
.
enable_inplace
is
None
:
self
.
_build_strategy
.
enable_inplace
=
False
if
self
.
_program
.
_is_mem_optimized
else
True
self
.
_build_strategy
.
enable_inplace
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
# TODO(wuyi): trainer endpoings should be passed in through
# build_strategy, not program.xxx.
if
self
.
_program
and
self
.
_build_strategy
.
num_trainers
>
1
and
\
self
.
_program
.
_trainers_endpoints
:
tps
=
self
.
_program
.
_trainers_endpoints
if
self
.
_build_strategy
.
num_trainers
>
1
and
trainers_endpoints
:
assert
self
.
_build_strategy
.
num_trainers
==
len
(
t
rainers_endpoint
s
),
"num_trainers == len(end_points)"
self
.
_build_strategy
.
trainers_endpoints
=
t
rainers_endpoint
s
self
.
_persistable_vars
=
set
([
cpt
.
to_text
(
v
.
name
)
for
v
in
[
var
for
var
in
self
.
_program
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
])
t
p
s
),
"num_trainers == len(end_points)"
self
.
_build_strategy
.
trainers_endpoints
=
t
p
s
self
.
_persistable_vars
=
[]
for
block_id
in
range
(
self
.
_program_desc
.
num_blocks
()):
bdesc
=
self
.
_program_desc
.
block
(
block_id
)
self
.
_persistable_vars
.
extend
([
cpt
.
to_text
(
v
.
name
())
for
v
in
bdesc
.
all_vars
()
if
v
.
persistable
()
and
v
.
type
()
!=
core
.
VarDesc
.
VarType
.
RAW
])
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
return
core
.
ParallelExecutor
(
places
,
self
.
_persistable_vars
,
self
.
_program
.
desc
,
places
,
set
(
self
.
_persistable_vars
),
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
self
.
_scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
)
self
.
_exec_strategy
,
self
.
_build_strategy
,
self
.
_graph
)
def
_compile_inference
(
self
):
assert
self
.
_is_data_parallel
is
False
return
core
.
create_paddle_predictor
(
self
.
_infer_config
)
def
_compile
(
self
,
scope
,
place
):
...
...
python/paddle/fluid/executor.py
浏览文件 @
69b1ebdf
...
...
@@ -538,6 +538,8 @@ class Executor(object):
else
:
# TODO(panyx0718): Can compile program to optimize executor
# performance.
# TODO(panyx0718): executor should be able to run graph.
assert
program
.
_program
,
"CompiledProgram is compiled from graph, can only run with_data_parallel."
return
self
.
_run
(
program
.
_program
,
self
.
_default_executor
,
...
...
python/paddle/fluid/framework.py
浏览文件 @
69b1ebdf
...
...
@@ -472,16 +472,19 @@ class Variable(object):
# get_capacity is implemented
pass
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
if
_in_imperative_mode
():
# record vars in tracer rather than blocks
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
if
not
self
.
_ivar
:
self
.
_ivar
=
core
.
VarBase
()
self
.
_ivar
=
core
.
VarBase
(
stop_gradient
)
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
stop_gradient
=
stop_gradient
if
persistable
:
self
.
block
.
vars
[
name
]
=
self
else
:
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
def
_numpy
(
self
):
new_ivar
=
self
.
_ivar
.
_copy_to
(
core
.
CPUPlace
(),
True
)
...
...
@@ -824,6 +827,7 @@ class Operator(object):
if
_in_imperative_mode
():
self
.
iop
=
core
.
OpBase
()
self
.
iop
.
desc
=
self
.
desc
self
.
inputs
=
defaultdict
(
list
)
if
inputs
is
not
None
:
for
k
,
v
in
six
.
iteritems
(
inputs
):
...
...
@@ -831,6 +835,7 @@ class Operator(object):
self
.
inputs
[
k
].
append
(
v
.
_ivar
)
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
self
.
inputs
[
k
].
extend
([
var
.
_ivar
for
var
in
v
])
self
.
outputs
=
defaultdict
(
list
)
if
outputs
is
not
None
:
for
k
,
v
in
six
.
iteritems
(
outputs
):
...
...
@@ -1280,6 +1285,15 @@ class Block(object):
else
:
raise
ValueError
(
"Var {0} is not found recursively"
.
format
(
name
))
def
_clear_block
(
self
):
# TODO(minqiyang): move this to backward_hooks
self
.
desc
.
_clear_block
()
for
name
in
self
.
vars
.
keys
():
assert
self
.
vars
[
name
].
persistable
del
self
.
ops
[:]
def
all_parameters
(
self
):
return
list
(
self
.
iter_parameters
())
...
...
@@ -1410,18 +1424,31 @@ class Block(object):
inputs
=
kwargs
.
get
(
"inputs"
,
None
),
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
if
_in_imperative_mode
():
# record ops in tracer rather than blocks
#
# TODO(minqiyang): add op stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
self
.
ops
.
append
(
op
)
# TODO(minqiyang): add stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
def
_trace_op
(
self
,
op
,
stop_gradient
=
False
):
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
,
_imperative_current_expected_place_
,
stop_gradient
)
backward_refs
=
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
,
_imperative_current_expected_place_
,
stop_gradient
)
# TODO(minqiyang): support backward_hooks to eager remove backward_refs
op
.
backward_refs
=
defaultdict
(
list
)
for
k
,
v
in
six
.
iteritems
(
op
.
inputs
):
if
k
in
backward_refs
:
op
.
backward_refs
[
k
]
=
op
.
inputs
[
k
]
for
k
,
v
in
six
.
iteritems
(
op
.
outputs
):
if
k
in
backward_refs
:
op
.
backward_refs
[
k
]
=
op
.
outputs
[
k
]
def
_insert_op
(
self
,
index
,
*
args
,
**
kwargs
):
"""
...
...
@@ -1476,7 +1503,8 @@ class Block(object):
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
self
.
ops
.
insert
(
0
,
op
)
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
if
_in_imperative_mode
():
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
def
_sync_with_cpp
(
self
):
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
69b1ebdf
...
...
@@ -176,10 +176,13 @@ class ParallelExecutor(object):
places
=
list
(
map
(
place_obj
,
self
.
_places
))
# step7: init ParallelExecutor
# ParallelExecutor API will be deprecated, don't support parallel graph.
self
.
_graph
=
core
.
Graph
(
main
.
desc
)
self
.
executor
=
core
.
ParallelExecutor
(
places
,
persistable_vars
,
main
.
desc
,
places
,
persistable_vars
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
)
local_scopes
,
exec_strategy
,
build_strategy
,
self
.
_graph
)
self
.
scope
=
scope
...
...
python/paddle/fluid/reader.py
浏览文件 @
69b1ebdf
...
...
@@ -12,14 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
core
from
.
import
core
import
six
import
threading
from
.framework
import
Program
,
Variable
,
program_guard
,
default_main_program
,
default_startup_program
from
.executor
import
global_scope
from
.data_feeder
import
DataFeeder
from
.layers.io
import
monkey_patch_reader_methods
,
_copy_reader_var_
,
double_buffer
import
unique_name
from
.unique_name
import
UniqueNameGenerator
__all__
=
[
'PyReader'
]
...
...
@@ -40,7 +40,7 @@ def _convert_places(places):
class
PyReader
(
object
):
unique_name_generator
=
unique_name
.
UniqueNameGenerator
()
unique_name_generator
=
UniqueNameGenerator
()
def
__init__
(
self
,
feed_list
,
...
...
@@ -272,7 +272,7 @@ class PyReader(object):
Set the data source of the PyReader object.
The provided :code:`reader` should be a Python generator,
which yields
numpy-
typed batched data.
which yields
list(numpy.ndarray)
typed batched data.
:code:`places` must be set when the PyReader object is iterable.
...
...
@@ -298,7 +298,7 @@ class PyReader(object):
Set the data source of the PyReader object.
The provided :code:`reader` should be a Python generator,
which yields LoDTensor-typed batched data.
which yields
numpy.ndarray-typed or
LoDTensor-typed batched data.
:code:`places` must be set when the PyReader object is iterable.
...
...
python/paddle/fluid/tests/unittests/test_alloc_continuous_space_op.py
0 → 100644
浏览文件 @
69b1ebdf
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestAllocContinuousSpace
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"alloc_continuous_space"
self
.
dtype
=
np
.
float32
attrs
=
self
.
init_attr
()
self
.
copy_data
=
attrs
[
"copy_data"
]
self
.
constant
=
attrs
[
"constant"
]
self
.
set_constant
=
attrs
[
"set_constant"
]
self
.
Inputs
=
self
.
init_input
()
self
.
FusedOutput
=
self
.
init_output
(
self
.
Inputs
,
self
.
set_constant
,
self
.
constant
)
self
.
inputs
=
{
'Input'
:
self
.
Inputs
}
self
.
attrs
=
attrs
self
.
outputs
=
{
'Output'
:
self
.
Inputs
,
'FusedOutput'
:
self
.
FusedOutput
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
init_input
(
self
):
inputs
=
[]
inputs
.
append
((
"x1"
,
np
.
random
.
random
([
20
,
3
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x2"
,
np
.
random
.
random
([
20
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x3"
,
np
.
random
.
random
([
1
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x4"
,
np
.
random
.
random
([
200
,
30
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x5"
,
np
.
random
.
random
([
30
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x6"
,
np
.
random
.
random
([
1
]).
astype
(
self
.
dtype
)))
return
inputs
def
init_attr
(
self
):
return
{
"copy_data"
:
True
,
"set_constant"
:
False
,
"constant"
:
0.0
}
def
init_output
(
self
,
input_list
,
set_constant
,
constant
):
inputs
=
[
input
[
1
].
flatten
()
for
input
in
input_list
]
output
=
np
.
concatenate
(
inputs
)
if
set_constant
:
output
=
np
.
ones
((
len
(
output
)))
*
constant
return
output
def
test_check_output
(
self
):
self
.
check_output
()
class
TestAllocContinuousSpace2
(
TestAllocContinuousSpace
):
def
init_attr
(
self
):
return
{
"copy_data"
:
False
,
"set_constant"
:
True
,
"constant"
:
0.5
}
def
test_check_output
(
self
):
self
.
check_output
(
no_check_set
=
[
"Output"
])
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
69b1ebdf
...
...
@@ -105,7 +105,7 @@ class MNIST(fluid.imperative.Layer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_float32
(
self
):
seed
=
90
batch_num
=
2
epoch_num
=
1
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -113,39 +113,40 @@ class TestImperativeMnist(unittest.TestCase):
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
dy_param_init_value
=
{}
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
:
break
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
dy_out
=
avg_loss
.
_numpy
()
if
epoch
==
0
and
batch_id
==
0
:
for
param
in
mnist
.
parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
fluid
.
default_main_program
().
global_block
().
_clear_block
()
dy_param_value
=
{}
for
param
in
mnist
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
...
...
@@ -157,7 +158,7 @@ class TestImperativeMnist(unittest.TestCase):
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
...
...
@@ -170,8 +171,7 @@ class TestImperativeMnist(unittest.TestCase):
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
for
param
in
mnist
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
...
...
@@ -180,26 +180,29 @@ class TestImperativeMnist(unittest.TestCase):
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
:
break
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
([
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
dy_x_data
.
all
(),
static_x_data
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
...
...
@@ -207,7 +210,7 @@ class TestImperativeMnist(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]
,
atol
=
1e-5
))
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
69b1ebdf
...
...
@@ -231,7 +231,7 @@ class TestImperativeResnet(unittest.TestCase):
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
1
batch_num
=
2
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -286,6 +286,8 @@ class TestImperativeResnet(unittest.TestCase):
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
fluid
.
default_main_program
().
global_block
().
_clear_block
()
dy_param_value
=
{}
for
param
in
resnet
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
...
...
@@ -319,11 +321,9 @@ class TestImperativeResnet(unittest.TestCase):
static_param_init_value
=
{}
static_param_name_list
=
[]
static_grad_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
for
param
in
resnet
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
for
param
in
resnet
.
parameters
():
if
not
param
.
stop_gradient
:
static_grad_name_list
.
append
(
param
.
name
+
core
.
grad_var_suffix
())
...
...
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_transformer.py
浏览文件 @
69b1ebdf
...
...
@@ -13,21 +13,47 @@
# limitations under the License.
import
os
import
sys
import
unittest
from
timeit
import
default_timer
as
timer
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.dataset.wmt16
as
wmt16
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
"0.0"
os
.
environ
[
'RECORDIO_FILENAME'
]
=
'/tmp/ir_memory_optimize_transformer.wmt16.recordio'
from
test_parallel_executor_transformer
import
TestTransformer
from
test_parallel_executor_transformer
import
transformer
from
test_parallel_executor_transformer
import
transformer
,
ModelHyperParams
,
transformer_model
,
transformer
,
prepare_batch_input
from
parallel_executor_test_base
import
TestParallelExecutorBase
# disable temporarily because of timeout.
sys
.
exit
(
0
)
# NOTE(dzhwinter): test diferent strategy colisions.
# open the eager delete tensor strategy by default.
class
TestTransformerWithIR
(
TestTransformer
):
class
TestTransformerWithIR
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
reader
=
paddle
.
batch
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
transformer_model
.
batch_size
)
with
fluid
.
recordio_writer
.
create_recordio_writer
(
os
.
environ
.
get
(
"RECORDIO_FILENAME"
))
as
writer
:
for
batch
in
reader
():
for
tensor
in
prepare_batch_input
(
batch
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
):
t
=
fluid
.
LoDTensor
()
t
.
set
(
tensor
,
fluid
.
CPUPlace
())
writer
.
append_tensor
(
t
)
writer
.
complete_append_tensor
()
def
test_main
(
self
):
if
core
.
is_compiled_with_cuda
():
# check python transpiler
...
...
@@ -35,13 +61,15 @@ class TestTransformerWithIR(TestTransformer):
transformer
,
use_cuda
=
True
,
memory_opt
=
True
,
use_ir_memory_optimize
=
False
)
use_ir_memory_optimize
=
False
,
iter
=
2
)
# check IR memory optimize
self
.
check_network_convergence
(
transformer
,
use_cuda
=
True
,
memory_opt
=
False
,
use_ir_memory_optimize
=
True
)
use_ir_memory_optimize
=
True
,
iter
=
2
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录