Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
95b18683
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95b18683
编写于
11月 04, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
11月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update DataLoader doc (#28290)
* update DataLoader doc. test=develop
上级
71d62207
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
35 addition
and
68 deletion
+35
-68
python/paddle/fluid/reader.py
python/paddle/fluid/reader.py
+35
-68
未找到文件。
python/paddle/fluid/reader.py
浏览文件 @
95b18683
...
@@ -153,18 +153,22 @@ class DataLoader(object):
...
@@ -153,18 +153,22 @@ class DataLoader(object):
multi-process workers will be used to load data asynchronously if
multi-process workers will be used to load data asynchronously if
:attr:`num_workers` is set as a positive number.
:attr:`num_workers` is set as a positive number.
DataLoader only supports map-style dataset(can get a sample from
DataLoader supports map-style dataset and iterable-style dataset.
dataset with a given index) currently, for a map-style dataset,
please see :code:`paddle.io.Dataset`.
batch_sampler please see :code:`paddle.io.BatchSampler`
For map-style datast(can get a sample from dataset with a given
index), please see :code:`paddle.io.Dataset`.
For iterable-style datast(get samples from dataset iteratively,
like a Python iterator), please see :code:`paddle.io.IterableDataset`.
For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
Args:
Args:
dataset(Dataset): the dataset to load data from, should be an
dataset(Dataset): the dataset to load data from, should be an
instance of subclass of :code:`paddle.io.Dataset` or
instance of subclass of :code:`paddle.io.Dataset` or
:code:`paddle.io.IterableDataset`.
:code:`paddle.io.IterableDataset`.
feed_list (list(Tensor)|tuple(Tensor)): feed variable list.
feed_list (list(Tensor)|tuple(Tensor)): feed variable list.
The variables should be created by :code:`
fluid
.data()`.
The variables should be created by :code:`
paddle.static
.data()`.
:attr:`feed_list` must be set if :attr:`return_list` is
:attr:`feed_list` must be set if :attr:`return_list` is
False. Default None.
False. Default None.
places(list(Place)|tuple(Place)|optional): a list of Place,
places(list(Place)|tuple(Place)|optional): a list of Place,
...
@@ -173,10 +177,10 @@ class DataLoader(object):
...
@@ -173,10 +177,10 @@ class DataLoader(object):
will be used. Default None.
will be used. Default None.
return_list (bool): whether the return value on each device is
return_list (bool): whether the return value on each device is
presented as a list. If :attr:`return_list=False`, the return
presented as a list. If :attr:`return_list=False`, the return
value on each device would be a dict of str ->
LoD
Tensor, where
value on each device would be a dict of str -> Tensor, where
the key of the dict is the name of each fed variables. If
the key of the dict is the name of each fed variables. If
:attr:`return_list=True`, the return value on each device would
:attr:`return_list=True`, the return value on each device would
be a list(
LoD
Tensor). :attr:`return_list` can only be True
be a list(Tensor). :attr:`return_list` can only be True
in dynamic graph mode. Default False.
in dynamic graph mode. Default False.
batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
to generate batch indices to draw samples from :attr:`dataset`
to generate batch indices to draw samples from :attr:`dataset`
...
@@ -224,7 +228,8 @@ class DataLoader(object):
...
@@ -224,7 +228,8 @@ class DataLoader(object):
import numpy as np
import numpy as np
import paddle
import paddle
import paddle.fluid as fluid
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.io import Dataset, BatchSampler, DataLoader
from paddle.io import Dataset, BatchSampler, DataLoader
BATCH_NUM = 20
BATCH_NUM = 20
...
@@ -234,8 +239,6 @@ class DataLoader(object):
...
@@ -234,8 +239,6 @@ class DataLoader(object):
IMAGE_SIZE = 784
IMAGE_SIZE = 784
CLASS_NUM = 10
CLASS_NUM = 10
USE_GPU = False # whether use GPU to run model
# define a random dataset
# define a random dataset
class RandomDataset(Dataset):
class RandomDataset(Dataset):
def __init__(self, num_samples):
def __init__(self, num_samples):
...
@@ -251,78 +254,34 @@ class DataLoader(object):
...
@@ -251,78 +254,34 @@ class DataLoader(object):
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
# get places
class SimpleNet(nn.Layer):
places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
# --------------------- dygraph mode --------------------
class SimpleNet(fluid.dygraph.Layer):
def __init__(self):
def __init__(self):
super(SimpleNet, self).__init__()
super(SimpleNet, self).__init__()
self.fc =
fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax'
)
self.fc =
nn.Linear(IMAGE_SIZE, CLASS_NUM
)
def forward(self, image, label=None):
def forward(self, image, label=None):
return self.fc(image)
return self.fc(image)
with fluid.dygraph.guard(places[0]):
simple_net = SimpleNet()
simple_net = SimpleNet()
opt = paddle.optimizer.SGD(learning_rate=1e-3,
opt = fluid.optimizer.SGD(learning_rate=1e-3,
parameters=simple_net.parameters())
parameter_list=simple_net.parameters())
loader = DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for e in range(EPOCH_NUM):
for i, (image, label) in enumerate(loader()):
out = simple_net(image)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.reduce_mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
simple_net.clear_gradients()
print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
# -------------------------------------------------------
# -------------------- static graph ---------------------
paddle.enable_static()
def simple_net(image, label):
fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
loss = fluid.layers.reduce_mean(cross_entropy)
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
return loss
image = fluid.data(name='image', shape=[None, IMAGE_SIZE], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
loss = simple_net(image, label)
exe = fluid.Executor(places[0])
exe.run(fluid.default_startup_program())
prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
loader = DataLoader(dataset,
loader = DataLoader(dataset,
feed_list=[image, label],
batch_size=BATCH_SIZE,
batch_size=BATCH_SIZE,
shuffle=True,
shuffle=True,
drop_last=True,
drop_last=True,
num_workers=2)
num_workers=2)
for e in range(EPOCH_NUM):
for e in range(EPOCH_NUM):
for i, data in enumerate(loader()):
for i, (image, label) in enumerate(loader()):
l = exe.run(prog, feed=data, fetch_list=[loss], return_numpy=True)
out = simple_net(image)
print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))
loss = F.cross_entropy(out, label)
avg_loss = paddle.mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
simple_net.clear_gradients()
print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
# -------------------------------------------------------
.. note::
.. note::
For reading iterable dataset with multiprocess Dataloader,
For reading iterable dataset with multiprocess Dataloader,
...
@@ -439,6 +398,10 @@ class DataLoader(object):
...
@@ -439,6 +398,10 @@ class DataLoader(object):
use_multiprocess
=
False
,
use_multiprocess
=
False
,
drop_last
=
True
):
drop_last
=
True
):
"""
"""
.. warning::
This API will be deprecated in the future, it is recommended to use
:code:`paddle.io.DataLoader` which supports multi-processes acceleration.
.. note::
.. note::
**The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**
**The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**
...
@@ -684,6 +647,10 @@ class DataLoader(object):
...
@@ -684,6 +647,10 @@ class DataLoader(object):
@
staticmethod
@
staticmethod
def
from_dataset
(
dataset
,
places
,
drop_last
=
True
):
def
from_dataset
(
dataset
,
places
,
drop_last
=
True
):
"""
"""
.. warning::
This API will be deprecated in the future, it is recommended to use
:code:`paddle.io.DataLoader` which supports multi-processes acceleration.
Create an iterable DataLoader object for loading data from Dataset.
Create an iterable DataLoader object for loading data from Dataset.
Dataset is only supported in Linux system currently.
Dataset is only supported in Linux system currently.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录