search.py 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20
# TODO: define searching & indexing functions of a tensor  
21 22
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
23

24 25
__all__ = [
    'argmax',
26 27
    'argmin',
    'argsort',
28
    'masked_select',
29
    'topk',
30
    'where',
31 32
    'index_select',
    'nonzero',
C
Chengmo 已提交
33
    'sort',
34
    'index_sample',
35 36 37
]

from paddle.common_ops_import import *
38 39


40 41 42 43 44
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
45
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
李灿 已提交
66

67 68
            import paddle
            
69
            paddle.disable_static()
70 71 72 73 74 75 76
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
77 78 79 80
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
81 82 83
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
84
            # [[1 3 2 0]
W
wawltor 已提交
85 86
            #  [0 1 2 3]
            #  [2 0 3 1]]]
87
            print(out2.numpy())
W
wawltor 已提交
88 89 90 91 92 93
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
94
            print(out3.numpy())
W
wawltor 已提交
95 96 97 98 99 100
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


124
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
125 126 127 128 129
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
130
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
131 132
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
133 134 135
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
136 137 138
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
139 140 141
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
142 143

    Returns:
W
wawltor 已提交
144
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
145 146 147 148

    Examples:
        .. code-block:: python

W
wawltor 已提交
149
            import paddle
150

W
wawltor 已提交
151
            paddle.disable_static()
152 153 154
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
155 156 157 158 159 160 161 162
            out1 = paddle.argmax(x)
            print(out1.numpy()) # 2
            out2 = paddle.argmax(x, axis=1)
            print(out2.numpy()) 
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
            print(out3.numpy()) 
            # [2 3 1]
163
    """
164 165 166 167
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
168

169 170 171 172
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
173

174 175
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
176 177 178 179 180 181
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
182 183
        out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
184 185 186 187 188 189
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
190
    attrs = {}
W
wawltor 已提交
191 192 193 194
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
195
    attrs['dtype'] = var_dtype
W
wawltor 已提交
196 197 198 199 200 201
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


202
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
203 204 205 206 207 208 209 210 211 212
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
213
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
214
        dtype(str): Data type of the output tensor which can
215
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
230 231 232
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
233 234 235 236 237 238 239 240 241
            out1 = paddle.argmin(x)
            print(out1.numpy()) # 4
            out2 = paddle.argmin(x, axis=1)
            print(out2.numpy()) 
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
            print(out3.numpy()) 
            # [0 0 2]
    """
242 243 244 245
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
246

247 248 249 250
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
251

252 253
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
254
    flatten = False
255
    if axis is None:
W
wawltor 已提交
256 257 258 259
        flatten = True
        axis = 0

    if in_dygraph_mode():
260 261
        out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
262 263 264 265 266 267 268
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
    out = helper.create_variable_for_type_inference(var_dtype)
269
    attrs = {}
W
wawltor 已提交
270
    attrs['keepdims'] = keepdim
271
    attrs['axis'] = axis
W
wawltor 已提交
272
    attrs['flatten'] = flatten
273
    attrs['dtype'] = var_dtype
274
    helper.append_op(
W
wawltor 已提交
275
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
276 277
    out.stop_gradient = True
    return out
278 279


280
def index_select(x, index, axis=0, name=None):
281
    """
282
	:alias_main: paddle.index_select
283
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
284

285 286 287 288
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
289

290
    Args:
291 292 293
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
294 295 296
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
297 298

    Returns:
299
        Tensor: A Tensor with same data type as ``x``.
300
    
301 302
    Examples:
        .. code-block:: python
303
            
304 305
            import paddle

306
            paddle.disable_static()  # Now we are in imperative mode
307 308 309 310
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
311 312 313 314 315 316 317 318
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
319
    """
320

321
    if in_dygraph_mode():
322
        return core.ops.index_select(x, index, 'dim', axis)
323

324 325 326
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
327
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
328
                             'paddle.tensor.search.index_select')
329

330
    out = helper.create_variable_for_type_inference(x.dtype)
331 332 333

    helper.append_op(
        type='index_select',
334
        inputs={'X': x,
335 336
                'Index': index},
        outputs={'Out': out},
337
        attrs={'dim': axis})
338 339 340
    return out


341
def nonzero(x, as_tuple=False):
342 343 344 345 346 347 348 349
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
350

351
    Args:
352
        x (Tensor): The input tensor variable.
353 354 355
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
356
        Tensor. The data type is int64.
357 358

    Examples:
359
    
360
        .. code-block:: python
361

362
            import paddle
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
                          [0.0, 2.0, 0.0],
                          [0.0, 0.0, 3.0]])
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            x3 = paddle.to_tensor([0.0, 0.0, 0.0])
            out_z1 = paddle.nonzero(x1)
            print(out_z1.numpy())
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
                print(out.numpy())
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
            print(out_z2.numpy())
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
                print(out.numpy())
            #[[1]
            # [3]]
            out_z3 = paddle.nonzero(x3)
            print(out_z3.numpy())
            #[]
            out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
            for out in out_z3_tuple:
                print(out.numpy())
            #[]                    
399 400
    """
    list_out = []
401
    shape = x.shape
402 403 404
    rank = len(shape)

    if in_dygraph_mode():
405
        outs = core.ops.where_index(x)
406
    else:
407
        outs = layers.where(x)
408 409 410 411 412 413 414 415 416 417 418 419 420

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


421
def sort(x, axis=-1, descending=False, name=None):
422
    """
423 424
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
425

W
wawltor 已提交
426
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
427

428
    Args:
429
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
430 431 432 433 434 435 436 437 438 439 440
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
441
        Tensor: sorted tensor(with the same shape and data type as ``x``).
442 443 444
    Examples:
        .. code-block:: python
            import paddle
445
            
446
            paddle.disable_static()
447 448 449 450 451 452 453
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
454 455 456
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
457 458 459 460 461 462 463 464
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
465
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
466 467 468 469 470 471
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
472
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
473 474 475 476 477
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
478
    """
479
    if in_dygraph_mode():
W
wawltor 已提交
480 481
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
482
    helper = LayerHelper("sort", **locals())
483 484
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
485 486 487 488
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
489
        inputs={'X': x},
490 491 492 493
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
494
    return out
C
Chengmo 已提交
495 496


497
def where(condition, x, y, name=None):
498
    """
499 500
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
501

502 503 504
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
505

506 507 508 509 510
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
511

512

513
    Args:
514 515 516 517 518 519 520 521
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

522
    Returns:
523 524
        Variable: A Tensor with the same data dype as x. 

525 526 527
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
528
          import paddle
529

530 531 532 533
          paddle.disable_static()
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
534 535 536

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
537 538
    """
    if not in_dygraph_mode():
539
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
540
        check_variable_and_dtype(
541
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
542
        check_variable_and_dtype(
543
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
544

545 546 547
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
548
        if in_dygraph_mode():
549
            return core.ops.where(condition, x, y)
550 551
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
552
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
553 554 555

            helper.append_op(
                type='where',
556 557 558
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
559 560 561
                outputs={'Out': [out]})
            return out
    else:
562 563 564 565
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
566 567 568 569
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
594
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
595
            int32, int64, float32, float64.
C
Chengmo 已提交
596
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
597 598 599
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
600
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
601 602 603 604 605 606

    Examples:

        .. code-block:: python

            import paddle
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
            print(out_z1.numpy())
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
            print(top_value.numpy())
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

            print(top_index.numpy())
            #[[3 2]
            # [3 2]
            # [3 2]]

            print(out_z2.numpy())
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
641

C
Chengmo 已提交
642
    """
C
Chengmo 已提交
643 644 645
    if in_dygraph_mode():
        return core.ops.index_sample(x, index)

C
Chengmo 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
680

681
            paddle.disable_static()
682 683 684 685 686 687 688

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
        return core.ops.masked_select(x, mask)

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

           paddle.disable_static()

737
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
738 739 740 741 742
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
           print(value_1.numpy())
           # [7]
           print(indices_1.numpy())
           # [3] 
743
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
           print(value_2.numpy())
           # [[7]
           #  [6]]
           print(indices_2.numpy())
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
           print(value_3.numpy())
           # [[7]
           #  [6]]
           print(indices_3.numpy())
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
           print(value_4.numpy())
           # [[2 6 5 7]]
           print(indices_4.numpy())
           # [[1 1 0 0]]

    """
    if in_dygraph_mode():
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'largest', largest,
                                             'sorted', sorted)
        else:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'axis', axis, 'largest',
                                             largest, 'sorted', sorted)
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices