lookup_table_op.h 9.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
28 29
#endif

30 31 32
namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
using Tensor = framework::Tensor;
F
fengjiayi 已提交
34
using LoDTensor = framework::LoDTensor;
35
using SelectedRows = framework::SelectedRows;
36 37
using DDim = framework::DDim;

Q
qiaolongfei 已提交
38
constexpr int64_t kNoPadding = -1;
39 40

template <typename T>
Y
Yu Yang 已提交
41
class LookupTableKernel : public framework::OpKernel<T> {
42
 public:
43
  void Compute(const framework::ExecutionContext &context) const override {
44 45
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
46
    auto *table_var = context.InputVar("W");
47

Q
Qiao Longfei 已提交
48
    auto id_name = context.Inputs("Ids").front();
49
    auto embedding_name = context.Inputs("W").front();
Q
Qiao Longfei 已提交
50
    auto out_name = context.Outputs("Out").front();
Q
Qiao Longfei 已提交
51 52

    // for remote prefetch
Q
Qiao Longfei 已提交
53
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
54
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
Q
Qiao Longfei 已提交
55 56
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");
Q
Qiao Longfei 已提交
57
    auto table_names = context.Attr<std::vector<std::string>>("table_names");
Q
Qiao Longfei 已提交
58

59
    if (remote_prefetch && !epmap.empty()) {
Q
Qiao Longfei 已提交
60
// if epmap is not empty, then the parameter will be fetched from remote
61 62
// parameter server

Q
Qiao Longfei 已提交
63
#ifdef PADDLE_WITH_DISTRIBUTE
64 65 66
      operators::distributed::prefetch(id_name, out_name, embedding_name, false,
                                       table_names, epmap, height_sections,
                                       context, context.scope());
Q
Qiao Longfei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      int64_t padding_idx = context.Attr<int64_t>("padding_idx");
      int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
      int64_t ids_numel = ids_t->numel();

      if (table_var->IsType<LoDTensor>()) {
        auto *table_t = context.Input<LoDTensor>("W");
        int64_t row_number = table_t->dims()[0];
        int64_t row_width = table_t->dims()[1];

        auto *table = table_t->data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
89 90 91 92 93 94 95 96 97 98 99 100
            PADDLE_ENFORCE_LT(
                ids[i], row_number,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0 and < %ld, but got %ld. Please check input "
                "value.",
                row_number, ids[i]);
            PADDLE_ENFORCE_GE(
                ids[i], 0,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0 and < %ld, but got %ld. Please check input "
                "value.",
                row_number, ids[i]);
Q
Qiao Longfei 已提交
101 102 103
            memcpy(output + i * row_width, table + ids[i] * row_width,
                   row_width * sizeof(T));
          }
104
        }
Q
Qiao Longfei 已提交
105 106 107 108 109 110 111 112 113 114 115
      } else if (table_var->IsType<SelectedRows>()) {
        const auto &table_t = table_var->Get<SelectedRows>();
        int64_t row_width = table_t.value().dims()[1];
        const auto *table = table_t.value().data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
116 117 118 119 120
            PADDLE_ENFORCE_GE(
                ids[i], 0,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0. But received %ld",
                ids[i]);
Q
Qiao Longfei 已提交
121
            auto id_index = table_t.Index(ids[i]);
122 123 124
            PADDLE_ENFORCE_GE(
                id_index, 0, "the input key should be exists. But received %d.",
                id_index);
Q
Qiao Longfei 已提交
125 126 127
            blas.VCOPY(row_width, table + id_index * row_width,
                       output + i * row_width);
          }
128 129
        }
      }
130 131 132 133 134
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
135
class LookupTableGradKernel : public framework::OpKernel<T> {
136
 public:
137
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
138 139 140 141 142 143 144 145
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
146 147 148
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
149 150
    }

151
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
152
    bool is_sparse = context.Attr<bool>("is_sparse");
153 154
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
155
    if (is_sparse) {
156 157 158
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
159

160
      auto *ids_data = ids->data<int64_t>();
161
      int64_t ids_num = ids->numel();
162

M
minqiyang 已提交
163
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
164 165
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
166
      d_table->set_rows(new_rows);
167

168
      auto *d_table_value = d_table->mutable_value();
169
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
170
      // FIXME(minqiyang):
M
minqiyang 已提交
171 172
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
189 190 191 192 193 194 195 196
        auto d_output_dims_2d =
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
        PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                          "ShapeError: The shape of lookup_table@Grad and "
                          "output@Grad should be same. "
                          "But received lookup_table@Grad's shape = [%s], "
                          "output@Grad's shape = [%s].",
                          d_table_value->dims(), d_output_dims_2d);
M
minqiyang 已提交
197 198
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
199
    } else {
200 201 202
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
203

204
      auto *ids_data = ids->data<int64_t>();
205

206 207
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
208

209 210
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
211

212 213
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

214
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
215 216 217 218
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
219 220 221 222 223 224 225 226 227 228
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
229 230 231
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
232
        }
233 234 235 236 237 238 239
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle