lookup_table_op.h 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
24 25 26 27

namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
using Tensor = framework::Tensor;
F
fengjiayi 已提交
29
using LoDTensor = framework::LoDTensor;
30
using SelectedRows = framework::SelectedRows;
31 32
using DDim = framework::DDim;

Q
qiaolongfei 已提交
33
constexpr int64_t kNoPadding = -1;
34 35

template <typename T>
Y
Yu Yang 已提交
36
class LookupTableKernel : public framework::OpKernel<T> {
37
 public:
38 39 40 41 42 43 44 45 46 47 48 49 50 51
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    auto *ids_var = context.InputVar("Ids");
    Tensor *output_t = context.Output<Tensor>("Out");
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

    DDim table_dim;

    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
52 53 54
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
55
    }
C
chengduoZH 已提交
56

57
    int64_t *ids;
C
chengduoZH 已提交
58
    int64_t ids_numel;
59

C
chengduoZH 已提交
60 61 62 63
    // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
    // is LoDTensor, this tensor contains the ids to be looked up in W;
    // when Ids's type is SelectedRows, the rows of Ids contains the
    // ids to be looked up in W.
C
chengduoZH 已提交
64
    if (ids_var->IsType<LoDTensor>()) {
65 66
      auto *ids_t = context.Input<LoDTensor>("Ids");
      ids = const_cast<int64_t *>(ids_t->data<int64_t>());
C
chengduoZH 已提交
67 68
      ids_numel = ids_t->numel();
    } else if (ids_var->IsType<SelectedRows>()) {
69 70
      auto *ids_t = context.Input<SelectedRows>("Ids");
      ids = const_cast<int64_t *>(ids_t->rows().data());
C
chengduoZH 已提交
71
      ids_numel = ids_t->rows().size();
72
      output_t->Resize({ids_numel, table_dim[1]});
C
chengduoZH 已提交
73 74 75 76
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }

77 78 79 80
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];
81

82 83
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
84

C
chengduoZH 已提交
85
      for (int64_t i = 0; i < ids_numel; ++i) {
86 87 88 89 90 91 92 93
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
94
      }
95 96 97 98 99 100
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
101
      for (int64_t i = 0; i < ids_numel; ++i) {
102 103
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
104 105
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
Y
fix ci  
Yancey1989 已提交
106 107
          auto id_index = table_t.Index(ids[i]);
          PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
108 109
          memcpy(output + i * row_width, table + id_index * row_width,
                 row_width * sizeof(T));
110 111
        }
      }
112 113 114 115 116
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
117
class LookupTableGradKernel : public framework::OpKernel<T> {
118
 public:
119
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
120 121 122 123 124 125 126 127
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
128 129 130
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
131 132
    }

133
    bool is_sparse = context.Attr<bool>("is_sparse");
134 135
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
136
    if (is_sparse) {
137 138 139
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
140

141
      auto *ids_data = ids->data<int64_t>();
142
      auto ids_dim = ids->dims();
143

144 145 146 147 148 149
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
150

151
      auto *d_table_value = d_table->mutable_value();
Q
qiaolongfei 已提交
152
      d_table_value->Resize({ids_dim[0], table_dim[1]});
153 154
      d_table_value->mutable_data<T>(context.GetPlace());

Q
qiaolongfei 已提交
155
      d_table->set_height(table_dim[0]);
156

157 158
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();
159 160 161 162

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
163 164 165
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
166

167
      auto *ids_data = ids->data<int64_t>();
168 169
      auto ids_dim = ids->dims();

Q
qiaolongfei 已提交
170
      int N = table_dim[0];
171 172
      int D = d_output->dims()[1];

173 174
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
175

176 177
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

178 179 180 181
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
182
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
183
        }
184 185 186 187 188 189 190
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle