lookup_table_op.h 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
28 29
#endif

30 31 32
namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
using Tensor = framework::Tensor;
F
fengjiayi 已提交
34
using LoDTensor = framework::LoDTensor;
35
using SelectedRows = framework::SelectedRows;
36 37
using DDim = framework::DDim;

Q
qiaolongfei 已提交
38
constexpr int64_t kNoPadding = -1;
39 40

template <typename T>
Y
Yu Yang 已提交
41
class LookupTableKernel : public framework::OpKernel<T> {
42
 public:
43
  void Compute(const framework::ExecutionContext &context) const override {
44 45
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
46
    auto *table_var = context.InputVar("W");
47

Q
Qiao Longfei 已提交
48 49
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();
Q
Qiao Longfei 已提交
50 51

    // for remote prefetch
Q
Qiao Longfei 已提交
52
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
Q
Qiao Longfei 已提交
53 54
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");
Q
Qiao Longfei 已提交
55
    auto table_names = context.Attr<std::vector<std::string>>("table_names");
Q
Qiao Longfei 已提交
56

Q
Qiao Longfei 已提交
57 58
    if (!epmap.empty()) {
// if epmap is not empty, then the parameter will be fetched from remote
Q
Qiao Longfei 已提交
59
// parameter
Q
Qiao Longfei 已提交
60 61
// server
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
62
      operators::distributed::prefetch(id_name, out_name, table_names, epmap,
T
tangwei12 已提交
63 64
                                       height_sections, context,
                                       context.scope());
Q
Qiao Longfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      int64_t padding_idx = context.Attr<int64_t>("padding_idx");
      int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
      int64_t ids_numel = ids_t->numel();

      if (table_var->IsType<LoDTensor>()) {
        auto *table_t = context.Input<LoDTensor>("W");
        int64_t row_number = table_t->dims()[0];
        int64_t row_width = table_t->dims()[1];

        auto *table = table_t->data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_LT(ids[i], row_number);
            PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
            memcpy(output + i * row_width, table + ids[i] * row_width,
                   row_width * sizeof(T));
          }
92
        }
Q
Qiao Longfei 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      } else if (table_var->IsType<SelectedRows>()) {
        const auto &table_t = table_var->Get<SelectedRows>();
        int64_t row_width = table_t.value().dims()[1];
        const auto *table = table_t.value().data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_GE(ids[i], 0);
            auto id_index = table_t.Index(ids[i]);
            PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
            blas.VCOPY(row_width, table + id_index * row_width,
                       output + i * row_width);
          }
110 111
        }
      }
112 113 114 115 116
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
117
class LookupTableGradKernel : public framework::OpKernel<T> {
118
 public:
119
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
120 121 122 123 124 125 126 127
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
128 129 130
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
131 132
    }

133
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
134
    bool is_sparse = context.Attr<bool>("is_sparse");
135 136
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
137
    if (is_sparse) {
138 139 140
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
141

142
      auto *ids_data = ids->data<int64_t>();
143
      int64_t ids_num = ids->numel();
144

M
minqiyang 已提交
145
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
146 147
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
148
      d_table->set_rows(new_rows);
149

150
      auto *d_table_value = d_table->mutable_value();
151
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
152
      // FIXME(minqiyang):
M
minqiyang 已提交
153 154
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
        PADDLE_ENFORCE_EQ(
            d_table_value->dims(),
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
176
    } else {
177 178 179
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
180

181
      auto *ids_data = ids->data<int64_t>();
182

Q
qiaolongfei 已提交
183
      int N = table_dim[0];
F
fengjiayi 已提交
184
      int D = table_dim[1];
185

186 187
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
188

189 190
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

191
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
192 193 194 195
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
196 197 198 199 200
          PADDLE_ENFORCE_LT(ids_data[i], N);
          PADDLE_ENFORCE_GE(ids_data[i], 0);
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
201
        }
202 203 204 205 206 207 208
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle