lookup_table_op.h 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
28 29
#endif

30 31 32
namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
using Tensor = framework::Tensor;
F
fengjiayi 已提交
34
using LoDTensor = framework::LoDTensor;
35
using SelectedRows = framework::SelectedRows;
36 37
using DDim = framework::DDim;

Q
qiaolongfei 已提交
38
constexpr int64_t kNoPadding = -1;
39 40

template <typename T>
Y
Yu Yang 已提交
41
class LookupTableKernel : public framework::OpKernel<T> {
42
 public:
43
  void Compute(const framework::ExecutionContext &context) const override {
44 45
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
46
    auto *table_var = context.InputVar("W");
47

Q
Qiao Longfei 已提交
48 49
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();
Q
Qiao Longfei 已提交
50 51

    // for remote prefetch
Q
Qiao Longfei 已提交
52
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
53
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
Q
Qiao Longfei 已提交
54 55
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");
Q
Qiao Longfei 已提交
56
    auto table_names = context.Attr<std::vector<std::string>>("table_names");
Q
Qiao Longfei 已提交
57

58
    if (remote_prefetch && !epmap.empty()) {
Q
Qiao Longfei 已提交
59
// if epmap is not empty, then the parameter will be fetched from remote
Q
Qiao Longfei 已提交
60
// parameter
Q
Qiao Longfei 已提交
61 62
// server
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
63
      operators::distributed::prefetch(id_name, out_name, table_names, epmap,
T
tangwei12 已提交
64 65
                                       height_sections, context,
                                       context.scope());
Q
Qiao Longfei 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      int64_t padding_idx = context.Attr<int64_t>("padding_idx");
      int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
      int64_t ids_numel = ids_t->numel();

      if (table_var->IsType<LoDTensor>()) {
        auto *table_t = context.Input<LoDTensor>("W");
        int64_t row_number = table_t->dims()[0];
        int64_t row_width = table_t->dims()[1];

        auto *table = table_t->data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
88 89 90 91 92 93 94 95 96 97 98 99
            PADDLE_ENFORCE_LT(
                ids[i], row_number,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0 and < %ld, but got %ld. Please check input "
                "value.",
                row_number, ids[i]);
            PADDLE_ENFORCE_GE(
                ids[i], 0,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0 and < %ld, but got %ld. Please check input "
                "value.",
                row_number, ids[i]);
Q
Qiao Longfei 已提交
100 101 102
            memcpy(output + i * row_width, table + ids[i] * row_width,
                   row_width * sizeof(T));
          }
103
        }
Q
Qiao Longfei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
      } else if (table_var->IsType<SelectedRows>()) {
        const auto &table_t = table_var->Get<SelectedRows>();
        int64_t row_width = table_t.value().dims()[1];
        const auto *table = table_t.value().data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_GE(ids[i], 0);
            auto id_index = table_t.Index(ids[i]);
            PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
            blas.VCOPY(row_width, table + id_index * row_width,
                       output + i * row_width);
          }
121 122
        }
      }
123 124 125 126 127
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
128
class LookupTableGradKernel : public framework::OpKernel<T> {
129
 public:
130
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
131 132 133 134 135 136 137 138
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
139 140 141
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
142 143
    }

144
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
145
    bool is_sparse = context.Attr<bool>("is_sparse");
146 147
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
148
    if (is_sparse) {
149 150 151
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
152

153
      auto *ids_data = ids->data<int64_t>();
154
      int64_t ids_num = ids->numel();
155

M
minqiyang 已提交
156
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
157 158
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
159
      d_table->set_rows(new_rows);
160

161
      auto *d_table_value = d_table->mutable_value();
162
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
163
      // FIXME(minqiyang):
M
minqiyang 已提交
164 165
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
        PADDLE_ENFORCE_EQ(
            d_table_value->dims(),
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
187
    } else {
188 189 190
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
191

192
      auto *ids_data = ids->data<int64_t>();
193

194 195
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
196

197 198
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
199

200 201
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

202
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
203 204 205 206
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
207 208 209 210 211 212 213 214 215 216
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
217 218 219
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
220
        }
221 222 223 224 225 226 227
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle