test_activation_op.py 108.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61 62 63 64

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
65 66
        if self.dtype == np.float16:
            return
67
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
68

69
    def init_dtype(self):
70
        self.dtype = np.float64
71

72 73 74
    def init_kernel_type(self):
        pass

Q
qijun 已提交
75

R
ronnywang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


140 141 142
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
143
            np_x = np.array([0.1])
144
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
145
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
146 147
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
148 149 150
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
151 152 153 154 155 156 157

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
158 159 160 161 162
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
163 164


C
chengduo 已提交
165
class TestSigmoid(TestActivation):
Q
qijun 已提交
166 167
    def setUp(self):
        self.op_type = "sigmoid"
168 169
        self.init_dtype()

170
        np.random.seed(1024)
171 172 173 174 175
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
176

177 178 179
    def init_dtype(self):
        self.dtype = np.float32

180
    def test_check_grad(self):
181 182 183 184
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
280
class TestLogSigmoid(TestActivation):
281 282
    def setUp(self):
        self.op_type = "logsigmoid"
283 284
        self.init_dtype()

285
        np.random.seed(2048)
286 287 288
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

289
        self.inputs = {'X': x}
290
        self.outputs = {'Out': out}
291 292

    def test_check_grad(self):
293 294
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
295
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
296 297


298
class TestLogSigmoidAPI(unittest.TestCase):
299
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
300
    def setUp(self):
301
        np.random.seed(1024)
302
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
303
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
304 305 306
            else paddle.CPUPlace()

    def test_static_api(self):
307
        paddle.enable_static()
308
        with paddle.static.program_guard(paddle.static.Program()):
309
            x = paddle.fluid.data('X', [11, 17])
310
            out1 = F.log_sigmoid(x)
311 312 313 314 315 316
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
317
            self.assertTrue(np.allclose(out_ref, r))
318 319 320 321

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
322
        out1 = F.log_sigmoid(x)
323 324 325 326
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
327
            self.assertTrue(np.allclose(out_ref, r.numpy()))
328 329
        paddle.enable_static()

330
    def test_fluid_api(self):
331
        paddle.enable_static()
332
        with paddle.static.program_guard(paddle.static.Program()):
333
            x = paddle.fluid.data('X', [11, 17])
334 335 336 337 338 339
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

340
    def test_errors(self):
341
        paddle.enable_static()
342 343
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
344
            self.assertRaises(TypeError, F.log_sigmoid, 1)
345
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
346 347
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
348
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
349
            # support the input dtype is float16
J
joejiong 已提交
350 351
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
352
            F.log_sigmoid(x_fp16)
353 354


355
class TestTanh(TestActivation, TestParameter):
356 357
    def setUp(self):
        self.op_type = "tanh"
358
        self.init_dtype()
359
        np.random.seed(1024)
360 361 362 363 364
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
365 366

    def test_check_grad(self):
367 368
        if self.dtype == np.float16:
            return
369
        self.check_grad(['X'], 'Out')
370

371 372 373 374 375 376
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

377

W
WangXi 已提交
378 379 380 381
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
382
        np.random.seed(1024)
W
WangXi 已提交
383
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
384
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
385
            else paddle.CPUPlace()
386 387 388 389
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
390 391

    def test_static_api(self):
392
        paddle.enable_static()
W
WangXi 已提交
393
        with paddle.static.program_guard(paddle.static.Program()):
394
            x = paddle.fluid.data('X', [10, 12], self.dtype)
395
            out1 = self.tanh(x)
W
WangXi 已提交
396 397 398 399 400 401 402 403 404 405
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
406
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
407 408 409 410 411 412 413 414 415 416
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
417
        paddle.enable_static()
W
WangXi 已提交
418 419 420 421 422 423 424 425 426
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
427
        paddle.enable_static()
W
WangXi 已提交
428 429
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
430
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
431
            # The input dtype must be float16, float32.
J
joejiong 已提交
432 433
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
434
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
435
            # support the input dtype is float16
J
joejiong 已提交
436 437
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
438 439 440 441 442 443 444
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
445 446


447
class TestAtan(TestActivation, TestParameter):
448 449 450 451
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

452
        np.random.seed(1024)
453 454 455 456 457 458 459 460 461
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
462
        self.check_grad(['X'], 'Out')
463

W
WuHaobo 已提交
464 465 466 467 468 469 470 471 472 473 474
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

475 476 477 478 479 480 481 482
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

483

484 485 486 487 488
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

489
        np.random.seed(1024)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

561
        np.random.seed(1024)
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


628 629 630 631 632 633
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
634 635
    def setUp(self):
        self.op_type = "tanh_shrink"
636 637
        self.init_dtype()

638
        np.random.seed(1024)
639 640
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
641

642
        self.inputs = {'X': x}
643
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
644 645

    def test_check_grad(self):
646 647
        if self.dtype == np.float16:
            return
648
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
649

650

651 652 653
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
654
        np.random.seed(1024)
655
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
656
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
657 658 659
            else paddle.CPUPlace()

    def test_static_api(self):
660
        paddle.enable_static()
661
        with paddle.static.program_guard(paddle.static.Program()):
662
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
684
        paddle.enable_static()
685 686 687 688 689 690 691 692 693
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
694
        paddle.enable_static()
695 696 697 698
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
699 700
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
701 702
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
703 704
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
705 706 707
            F.tanhshrink(x_fp16)


708 709 710 711 712 713
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
714
class TestHardShrink(TestActivation):
715 716
    def setUp(self):
        self.op_type = "hard_shrink"
717 718
        self.init_dtype()

719 720
        self.threshold = 0.5
        self.set_attrs()
721
        np.random.seed(1024)
Z
zhupengyang 已提交
722
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
723
        out = ref_hardshrink(x, self.threshold)
724

725
        self.attrs = {'threshold': self.threshold}
726
        self.inputs = {'X': x}
727
        self.outputs = {'Out': out}
728

729 730 731
    def set_attrs(self):
        pass

732
    def test_check_grad(self):
733 734
        if self.dtype == np.float16:
            return
735
        self.check_grad(['X'], 'Out')
736 737


738 739 740 741 742
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


743 744 745
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
746
        np.random.seed(1024)
747
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
748
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
749 750 751
            else paddle.CPUPlace()

    def test_static_api(self):
752
        paddle.enable_static()
753
        with paddle.static.program_guard(paddle.static.Program()):
754
            x = paddle.fluid.data('X', [10, 12])
755 756 757 758 759 760 761 762 763 764 765
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
766
        x = paddle.to_tensor(self.x_np)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
783
        paddle.enable_static()
784 785 786 787 788 789 790 791
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

792
    def test_errors(self):
793
        paddle.enable_static()
794
        with paddle.static.program_guard(paddle.static.Program()):
795
            # The input type must be Variable.
796
            self.assertRaises(TypeError, F.hardshrink, 1)
797
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
798 799
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
800
            self.assertRaises(TypeError, F.hardshrink, x_int32)
801
            # support the input dtype is float16
J
joejiong 已提交
802 803
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
804
            F.hardshrink(x_fp16)
805 806


807 808 809 810 811 812 813 814 815 816 817
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
818
        np.random.seed(1024)
819
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
820
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
821 822 823
            else paddle.CPUPlace()

    def test_static_api(self):
824
        paddle.enable_static()
825
        with paddle.static.program_guard(paddle.static.Program()):
826
            x = paddle.fluid.data('X', [10, 12])
827 828 829 830 831 832 833 834 835 836 837
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
838
        x = paddle.to_tensor(self.x_np)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
855
        paddle.enable_static()
856 857 858 859
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
860 861
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
862 863
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
864 865
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
866 867 868
            F.hardtanh(x_fp16)


869 870 871 872 873 874 875 876
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
877 878
    def setUp(self):
        self.op_type = "softshrink"
879 880
        self.init_dtype()

881
        threshold = 0.8
882

883
        np.random.seed(1023)
884 885 886 887
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
888
        self.outputs = {'Out': out}
889 890

    def test_check_grad(self):
891 892
        if self.dtype == np.float16:
            return
893
        self.check_grad(['X'], 'Out')
894

895

896 897 898 899
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
900
        np.random.seed(1024)
901
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
902
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
903 904 905
            else paddle.CPUPlace()

    def test_static_api(self):
906
        paddle.enable_static()
907
        with paddle.static.program_guard(paddle.static.Program()):
908
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
930
        paddle.enable_static()
931 932 933 934 935 936 937 938
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

939
    def test_errors(self):
940
        paddle.enable_static()
941
        with paddle.static.program_guard(paddle.static.Program()):
942
            # The input type must be Variable.
943
            self.assertRaises(TypeError, F.softshrink, 1)
944
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
945 946
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
947
            self.assertRaises(TypeError, F.softshrink, x_int32)
948
            # The threshold must be no less than zero
J
joejiong 已提交
949 950
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
951
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
952
            # support the input dtype is float16
J
joejiong 已提交
953 954
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
955
            F.softshrink(x_fp16)
956 957


958
class TestSqrt(TestActivation, TestParameter):
959 960
    def setUp(self):
        self.op_type = "sqrt"
961
        self.python_api = paddle.sqrt
962 963
        self.init_dtype()

964
        np.random.seed(1023)
965 966 967 968 969
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
970 971

    def test_check_grad(self):
972 973
        if self.dtype == np.float16:
            return
974 975 976 977
        self.check_grad(['X'], 'Out', check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
978

979

980 981 982 983 984
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
985
        self.python_api = paddle.sqrt
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
1002
        self.check_output_with_place(place, check_eager=True)
1003 1004 1005

    def test_check_grad(self):
        place = core.CUDAPlace(0)
1006
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
1007 1008


Z
zhoukunsheng 已提交
1009 1010 1011 1012 1013
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

1014
        np.random.seed(1024)
Z
zhupengyang 已提交
1015
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
1027
class TestAbs(TestActivation):
1028 1029
    def setUp(self):
        self.op_type = "abs"
1030 1031
        self.init_dtype()

1032
        np.random.seed(1024)
1033
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1034
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1035
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1036
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1037 1038
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1039 1040 1041 1042
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1043 1044

    def test_check_grad(self):
1045 1046
        if self.dtype == np.float16:
            return
1047
        self.check_grad(['X'], 'Out', check_eager=False)
1048

1049

C
chengduo 已提交
1050
class TestCeil(TestActivation):
D
dzhwinter 已提交
1051 1052
    def setUp(self):
        self.op_type = "ceil"
1053 1054
        self.init_dtype()

1055
        np.random.seed(1024)
Z
zhupengyang 已提交
1056
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1057 1058 1059 1060
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1061

D
dzhwinter 已提交
1062
    # The same reason with TestFloor
C
chengduo 已提交
1063
    def test_check_grad(self):
1064 1065 1066
        pass


C
chengduo 已提交
1067
class TestFloor(TestActivation):
D
dzhwinter 已提交
1068 1069
    def setUp(self):
        self.op_type = "floor"
1070 1071
        self.init_dtype()

1072
        np.random.seed(1024)
Z
zhupengyang 已提交
1073
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1074 1075 1076 1077
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1078

D
dzhwinter 已提交
1079
    # the gradient on floor, ceil, round is undefined.
1080
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1081 1082
    # The same reason with TestFloor
    def test_check_grad(self):
1083 1084 1085
        pass


C
chengduo 已提交
1086
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1087 1088
    def setUp(self):
        self.op_type = "cos"
1089 1090
        self.init_dtype()

1091
        np.random.seed(1024)
Z
zhupengyang 已提交
1092
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1093 1094 1095 1096
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1097 1098

    def test_check_grad(self):
1099 1100
        if self.dtype == np.float16:
            return
1101
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
1102

1103

J
joejiong 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1155 1156 1157 1158 1159
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

1160
        np.random.seed(1024)
Z
zhupengyang 已提交
1161
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1162 1163 1164 1165 1166 1167 1168 1169
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1170
        self.check_grad(['X'], 'Out')
1171 1172


1173
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1174 1175
    def setUp(self):
        self.op_type = "sin"
1176 1177
        self.init_dtype()

1178
        np.random.seed(1024)
Z
zhupengyang 已提交
1179
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1180 1181 1182 1183
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1184 1185

    def test_check_grad(self):
1186 1187
        if self.dtype == np.float16:
            return
1188
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
1189 1190


1191 1192 1193 1194 1195
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

1196
        np.random.seed(2048)
Z
zhupengyang 已提交
1197
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1198 1199 1200 1201 1202 1203 1204 1205
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1206
        self.check_grad(['X'], 'Out')
1207 1208


X
xiaoting 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


C
chengduo 已提交
1263
class TestRound(TestActivation):
D
dzhwinter 已提交
1264 1265
    def setUp(self):
        self.op_type = "round"
1266 1267
        self.init_dtype()

1268
        np.random.seed(1024)
Z
zhupengyang 已提交
1269
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1270 1271 1272 1273
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1274

C
chengduo 已提交
1275
    def test_check_grad(self):
1276 1277 1278
        pass


C
chengduo 已提交
1279
class TestRelu(TestActivation):
1280
    def setUp(self):
Q
qijun 已提交
1281
        self.op_type = "relu"
K
Kexin Zhao 已提交
1282 1283
        self.init_dtype()

1284
        np.random.seed(1024)
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1297 1298

        self.outputs = {'Out': out}
1299 1300

    def test_check_grad(self):
K
Kexin Zhao 已提交
1301 1302
        if self.dtype == np.float16:
            return
1303
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1304 1305


1306 1307 1308
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1309
        np.random.seed(1024)
1310
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1311
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1312
            else paddle.CPUPlace()
1313 1314 1315 1316
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1317 1318

    def test_static_api(self):
1319
        paddle.enable_static()
1320
        with paddle.static.program_guard(paddle.static.Program()):
1321
            x = paddle.fluid.data('X', [10, 12])
1322
            out1 = self.relu(x)
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1335 1336
        out1 = m(x)
        out2 = self.relu(x)
1337 1338 1339 1340 1341
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1342
    def test_errors(self):
1343
        paddle.enable_static()
1344
        with paddle.static.program_guard(paddle.static.Program()):
1345
            # The input type must be Variable.
1346
            self.assertRaises(TypeError, self.relu, 1)
1347
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1348 1349
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1350
            self.assertRaises(TypeError, self.relu, x_int32)
1351
            # support the input dtype is float16
J
joejiong 已提交
1352 1353
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1354 1355 1356 1357 1358 1359 1360
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1361 1362


1363 1364 1365 1366 1367 1368
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1369
class TestLeakyRelu(TestActivation):
1370 1371 1372
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1373 1374 1375
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1376
        alpha = self.get_alpha()
A
Adam 已提交
1377

1378
        np.random.seed(1024)
A
Adam 已提交
1379 1380
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1381 1382
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1383

1384
        self.inputs = {'X': x}
A
Adam 已提交
1385
        self.outputs = {'Out': out}
1386
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1387 1388 1389 1390

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1391
        self.check_grad(['X'], 'Out')
1392 1393


1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1413
        np.random.seed(1024)
1414
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1415
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1416 1417 1418
            else paddle.CPUPlace()

    def test_static_api(self):
1419
        paddle.enable_static()
1420
        with paddle.static.program_guard(paddle.static.Program()):
1421
            x = paddle.fluid.data('X', [10, 12])
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1433
        x = paddle.to_tensor(self.x_np)
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1450
        paddle.enable_static()
1451 1452 1453 1454 1455 1456 1457 1458
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1459
    def test_errors(self):
1460
        paddle.enable_static()
1461
        with paddle.static.program_guard(paddle.static.Program()):
1462
            # The input type must be Variable.
1463
            self.assertRaises(TypeError, F.leaky_relu, 1)
1464
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1465 1466
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1467 1468
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1469 1470
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1471
            F.leaky_relu(x_fp16)
1472 1473


1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1484 1485 1486
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1487
        approximate = True
1488
        np.random.seed(1024)
1489 1490
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1491

1492
        self.inputs = {'X': x}
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1507
        np.random.seed(2048)
C
Clementine 已提交
1508
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1509
        out = gelu(x, approximate)
C
Clementine 已提交
1510

1511
        self.inputs = {'X': x}
C
Clementine 已提交
1512
        self.outputs = {'Out': out}
1513
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1514 1515 1516 1517

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1518
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1519 1520


1521 1522 1523
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1524
        np.random.seed(1024)
1525
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1526
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1527 1528 1529
            else paddle.CPUPlace()

    def test_static_api(self):
1530
        paddle.enable_static()
1531
        with paddle.static.program_guard(paddle.static.Program()):
1532
            x = paddle.fluid.data('X', [11, 17])
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1561
        paddle.enable_static()
1562 1563 1564 1565
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1566 1567
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1568 1569
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1570 1571
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1572 1573 1574
            F.gelu(x_fp16)


C
chengduo 已提交
1575
class TestBRelu(TestActivation):
1576 1577
    def setUp(self):
        self.op_type = "brelu"
1578 1579
        self.init_dtype()

1580
        np.random.seed(1024)
Z
zhupengyang 已提交
1581
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1582 1583
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1584 1585
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1586
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1587 1588 1589
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1590 1591 1592

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1593
        self.outputs = {'Out': t}
1594 1595

    def test_check_grad(self):
1596 1597
        if self.dtype == np.float16:
            return
1598
        self.check_grad(['X'], 'Out')
1599

1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1612
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1642 1643 1644 1645 1646 1647 1648
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1649
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1650
    def setUp(self):
1651
        self.op_type = "relu6"
1652 1653
        self.init_dtype()

1654
        np.random.seed(1024)
Z
zhupengyang 已提交
1655
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1656
        x[np.abs(x) < 0.005] = 0.02
1657
        out = ref_relu6(x)
1658

1659 1660
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1661
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1662

1663 1664 1665
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1666
        self.check_grad(['X'], 'Out')
1667 1668


1669 1670 1671
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1672
        np.random.seed(1024)
1673 1674
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1675
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1676 1677 1678
            else paddle.CPUPlace()

    def test_static_api(self):
1679
        paddle.enable_static()
1680
        with paddle.static.program_guard(paddle.static.Program()):
1681
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1703
        paddle.enable_static()
1704 1705 1706 1707 1708 1709 1710 1711
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1712
    def test_errors(self):
1713
        paddle.enable_static()
1714
        with paddle.static.program_guard(paddle.static.Program()):
1715
            # The input type must be Variable.
1716
            self.assertRaises(TypeError, F.relu6, 1)
1717
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1718 1719
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1720
            self.assertRaises(TypeError, F.relu6, x_int32)
1721
            # support the input dtype is float16
J
joejiong 已提交
1722 1723
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1724
            F.relu6(x_fp16)
1725 1726


1727 1728 1729 1730 1731
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1732 1733 1734 1735 1736
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1737 1738
        skip_check_grad_ci(reason="not implemented yet")

1739
        np.random.seed(1024)
Z
zhupengyang 已提交
1740
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1741 1742 1743 1744 1745 1746
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1747
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1748

1749
        self.inputs = {'X': x}
H
huangjun12 已提交
1750 1751 1752 1753 1754 1755
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1756 1757

        return  # not implemented yet
1758
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1759 1760


1761 1762 1763 1764
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1765
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1766 1767 1768 1769
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1770
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1789
        paddle.enable_static()
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1808
            # The input type must be Variable.
1809
            self.assertRaises(TypeError, F.hardswish, 1)
1810
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1811 1812
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1813
            self.assertRaises(TypeError, F.hardswish, x_int32)
1814
            # support the input dtype is float16
J
joejiong 已提交
1815 1816
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1817
            F.hardswish(x_fp16)
1818 1819


C
chengduo 已提交
1820
class TestSoftRelu(TestActivation):
1821 1822
    def setUp(self):
        self.op_type = "soft_relu"
1823 1824
        self.init_dtype()

1825
        np.random.seed(4096)
1826
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1827
        threshold = 2.0
Q
qijun 已提交
1828 1829
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1830
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1831 1832 1833
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1834 1835 1836 1837 1838
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1839 1840

    def test_check_grad(self):
1841 1842
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1843
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1844

1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1859
def elu(x, alpha):
Z
zhupengyang 已提交
1860
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1861 1862 1863
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1864
class TestELU(TestActivation):
1865 1866
    def setUp(self):
        self.op_type = "elu"
1867 1868
        self.init_dtype()

1869
        np.random.seed(1024)
Z
zhupengyang 已提交
1870
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1871
        alpha = self.get_alpha()
1872
        out = elu(x, alpha)
1873 1874 1875 1876
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1877
        self.outputs = {'Out': out}
1878 1879

    def test_check_grad(self):
1880 1881
        if self.dtype == np.float16:
            return
1882
        self.check_grad(['X'], 'Out')
1883

Z
zhupengyang 已提交
1884 1885 1886 1887 1888 1889 1890 1891
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1892

1893 1894 1895
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1896
        np.random.seed(1024)
1897
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1898
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1899
            else paddle.CPUPlace()
1900 1901 1902 1903
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1904 1905

    def test_static_api(self):
1906
        paddle.enable_static()
1907
        with paddle.static.program_guard(paddle.static.Program()):
1908
            x = paddle.fluid.data('X', [10, 12])
1909
            out1 = self.elu(x)
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1921 1922
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1923 1924 1925 1926 1927 1928
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1929 1930
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1931 1932 1933 1934 1935 1936 1937
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1938
    def test_errors(self):
1939
        paddle.enable_static()
1940 1941
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1942
            self.assertRaises(TypeError, self.elu, 1)
1943
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1944 1945
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1946
            self.assertRaises(TypeError, self.elu, x_int32)
1947
            # support the input dtype is float16
J
joejiong 已提交
1948 1949
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1950 1951 1952
            self.elu(x_fp16)


Z
zhupengyang 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2053
class TestReciprocal(TestActivation):
Q
qijun 已提交
2054 2055
    def setUp(self):
        self.op_type = "reciprocal"
2056
        self.python_api = paddle.reciprocal
2057 2058
        self.init_dtype()

2059
        np.random.seed(1024)
2060 2061 2062 2063 2064
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2065 2066

    def test_check_grad(self):
2067 2068
        if self.dtype == np.float16:
            return
2069 2070 2071 2072
        self.check_grad(['X'], 'Out', max_relative_error=0.01, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2073 2074


C
chengduo 已提交
2075
class TestLog(TestActivation):
Q
qijun 已提交
2076 2077
    def setUp(self):
        self.op_type = "log"
2078 2079
        self.init_dtype()

2080
        np.random.seed(1024)
2081 2082 2083 2084 2085
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2086 2087

    def test_check_grad(self):
2088 2089
        if self.dtype == np.float16:
            return
2090
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2101

J
joejiong 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2200 2201 2202 2203 2204
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

2205
        np.random.seed(1024)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2229 2230 2231
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2232
        expected_res = np.log1p(input_x)
2233
        self.assertTrue(np.allclose(res1, expected_res))
2234 2235 2236 2237 2238 2239 2240 2241

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2242
        self.assertTrue(np.allclose(np_z, z_expected))
2243 2244


C
chengduo 已提交
2245
class TestSquare(TestActivation):
Q
qijun 已提交
2246 2247
    def setUp(self):
        self.op_type = "square"
2248
        self.python_api = paddle.square
2249 2250
        self.init_dtype()

2251
        np.random.seed(1024)
2252 2253 2254 2255 2256
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2257 2258

    def test_check_grad(self):
2259 2260
        if self.dtype == np.float16:
            return
2261 2262 2263 2264 2265
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.007, check_eager=True)

    def test_check_output(self):
        self.check_output(check_eager=True)
Q
qijun 已提交
2266

2267

2268 2269 2270 2271 2272
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
2273
        self.python_api = paddle.square
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
2290
        self.check_output_with_place(place, check_eager=True)
2291 2292 2293

    def test_check_grad(self):
        place = core.CUDAPlace(0)
2294 2295
        self.check_grad_with_place(
            place, ['X'], 'Out', numeric_grad_delta=0.5, check_eager=True)
2296 2297


C
chengduo 已提交
2298
class TestPow(TestActivation):
2299 2300
    def setUp(self):
        self.op_type = "pow"
2301 2302
        self.init_dtype()

2303
        np.random.seed(1024)
2304 2305 2306 2307
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2308
        self.attrs = {'factor': 3.0}
2309
        self.outputs = {'Out': out}
2310 2311

    def test_check_grad(self):
2312 2313
        if self.dtype == np.float16:
            return
2314
        self.check_grad(['X'], 'Out')
2315

2316

2317 2318 2319 2320 2321
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

2322
        np.random.seed(1024)
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2340
        self.check_grad(['X'], 'Out')
2341 2342 2343 2344 2345

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2346 2347 2348 2349 2350
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2351 2352 2353 2354 2355

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2356 2357 2358
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2359 2360

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2361
        res_1, res_2, res, res_6 = exe.run(
2362 2363
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2364
            fetch_list=[out_1, out_2, res, out_6])
2365

2366 2367 2368
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2393

2394 2395 2396 2397 2398
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2399
class TestSTanh(TestActivation):
2400 2401 2402 2403 2404 2405
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2406 2407
    def setUp(self):
        self.op_type = "stanh"
2408
        self.init_dtype()
2409 2410
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2411

2412
        np.random.seed(1024)
2413
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2414 2415
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2416

2417
        self.inputs = {'X': x}
2418
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2419
        self.outputs = {'Out': out}
2420

Q
qijun 已提交
2421
    def test_check_grad(self):
2422 2423
        if self.dtype == np.float16:
            return
2424
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2425

2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2483
    def test_errors(self):
2484 2485
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2486
            # The input type must be Variable.
2487
            self.assertRaises(TypeError, paddle.stanh, 1)
2488
            # The input dtype must be float16, float32, float64.
2489 2490 2491
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2492
            # support the input dtype is float16
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2506 2507


2508 2509 2510 2511 2512 2513 2514
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2515
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2516 2517
    def setUp(self):
        self.op_type = "softplus"
2518 2519
        self.init_dtype()

2520 2521
        beta = 2
        threshold = 15
2522

2523
        np.random.seed(1024)
2524 2525 2526 2527
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2528
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2529 2530

    def test_check_grad(self):
2531 2532
        if self.dtype == np.float16:
            return
2533
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2534

2535

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2565 2566 2567 2568 2569
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2570
        np.random.seed(1024)
2571
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2572
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2573 2574 2575
            else paddle.CPUPlace()

    def test_static_api(self):
2576
        paddle.enable_static()
2577
        with paddle.static.program_guard(paddle.static.Program()):
2578
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2600
        paddle.enable_static()
2601 2602 2603 2604 2605 2606 2607 2608 2609
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2610
        paddle.enable_static()
2611 2612 2613 2614
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2615 2616
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2617 2618
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2619 2620
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2621 2622 2623 2624 2625 2626 2627 2628
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2629
class TestSoftsign(TestActivation):
2630 2631
    def setUp(self):
        self.op_type = "softsign"
2632 2633
        self.init_dtype()

2634
        np.random.seed(1024)
2635 2636 2637
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2638
        self.outputs = {'Out': out}
2639 2640

    def test_check_grad(self):
2641 2642
        if self.dtype == np.float16:
            return
2643
        self.check_grad(['X'], 'Out')
2644 2645


2646 2647 2648
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2649
        np.random.seed(1024)
2650
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2651
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2652 2653 2654
            else paddle.CPUPlace()

    def test_static_api(self):
2655
        paddle.enable_static()
2656
        with paddle.static.program_guard(paddle.static.Program()):
2657
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2679
        paddle.enable_static()
2680 2681 2682 2683 2684 2685 2686 2687 2688
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2689
        paddle.enable_static()
2690 2691 2692 2693
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2694 2695
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2696 2697
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2698 2699
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2700 2701 2702
            F.softsign(x_fp16)


2703 2704 2705 2706 2707
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2708
class TestThresholdedRelu(TestActivation):
2709 2710
    def setUp(self):
        self.op_type = "thresholded_relu"
2711 2712
        self.init_dtype()

2713
        threshold = 15
2714

2715 2716 2717 2718 2719 2720
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2721
        self.outputs = {'Out': out}
2722 2723

    def test_check_grad(self):
2724 2725
        if self.dtype == np.float16:
            return
2726
        self.check_grad(['X'], 'Out')
2727 2728


2729 2730 2731 2732 2733 2734 2735
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2736
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2737 2738 2739 2740 2741
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2742
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2773
    def test_errors(self):
2774 2775
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2776
            # The input type must be Variable.
2777
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2778
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2779 2780
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2781
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2782
            # support the input dtype is float16
J
joejiong 已提交
2783 2784
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2785
            F.thresholded_relu(x_fp16)
2786 2787


2788 2789 2790 2791
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2792
class TestHardSigmoid(TestActivation):
2793 2794
    def setUp(self):
        self.op_type = "hard_sigmoid"
2795 2796 2797 2798
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2799

2800 2801 2802
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2803

2804
        # Same reason as TestAbs
2805 2806 2807
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2808

2809
        out = ref_hardsigmoid(x, self.slope, self.offset)
2810

2811 2812
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2813
        self.outputs = {'Out': out}
2814

2815 2816
    def set_attrs(self):
        pass
2817

2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2834
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2835 2836 2837 2838
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2839
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2858
        paddle.enable_static()
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2877
            # The input type must be Variable.
2878
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2879
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2880 2881
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2882
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2883
            # support the input dtype is float16
J
joejiong 已提交
2884 2885
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2886
            F.hardsigmoid(x_fp16)
2887 2888


2889 2890 2891 2892 2893
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2894
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2895 2896
    def setUp(self):
        self.op_type = "swish"
2897 2898
        self.init_dtype()

2899
        np.random.seed(1024)
2900 2901 2902
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2903
        self.attrs = {'beta': 1.0}
2904
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2905 2906

    def test_check_grad(self):
2907 2908
        if self.dtype == np.float16:
            return
2909 2910
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2911

2912 2913 2914 2915 2916
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2917
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2918 2919 2920 2921 2922
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2923
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2953

2954
    def test_errors(self):
2955 2956
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2957
            # The input type must be Variable.
2958
            self.assertRaises(TypeError, F.swish, 1)
2959
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2960 2961
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2962
            self.assertRaises(TypeError, F.swish, x_int32)
2963
            # support the input dtype is float16
J
joejiong 已提交
2964 2965
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2966
            F.swish(x_fp16)
2967 2968


2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3080
create_test_error_class('tan')
X
xiaoting 已提交
3081 3082 3083
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3084 3085


3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3105 3106 3107 3108 3109
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3110
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3111 3112 3113 3114
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3115

C
chengduo 已提交
3116
        def test_check_output(self):
3117
            place = core.CUDAPlace(0)
C
chengduo 已提交
3118 3119 3120
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3121

C
chengduo 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3135
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3136
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3137
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3138 3139
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3140
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3141
create_test_act_fp16_class(TestHardShrink)
3142
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3143 3144 3145 3146 3147
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3148
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3149
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3150
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3151
create_test_act_fp16_class(TestSin)
3152
create_test_act_fp16_class(TestSinh)
3153 3154
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3155 3156 3157
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3158 3159
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3160
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3161 3162
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3163
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3164
create_test_act_fp16_class(TestELU)
3165
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3166 3167
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3168 3169 3170 3171
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3172
create_test_act_fp16_class(TestLog10, atol=5e-2)
3173
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3174 3175
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3176
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3177 3178 3179 3180 3181
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3182
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3183
create_test_act_fp16_class(TestHardSwish)
3184
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3213 3214
if __name__ == "__main__":
    unittest.main()