test_activation_op.py 25.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22 23
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
24 25


26
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
42
class TestActivation(OpTest):
Q
qijun 已提交
43 44
    def setUp(self):
        self.op_type = "exp"
45
        self.init_dtype()
46
        self.init_kernel_type()
47 48 49 50 51 52

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
53 54 55 56 57

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
58 59
        if self.dtype == np.float16:
            return
60
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
61

62
    def init_dtype(self):
63
        self.dtype = np.float64
64

65 66 67
    def init_kernel_type(self):
        pass

Q
qijun 已提交
68

C
chengduo 已提交
69
class TestSigmoid(TestActivation):
Q
qijun 已提交
70 71
    def setUp(self):
        self.op_type = "sigmoid"
72 73 74 75 76 77 78
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
79

80 81 82
    def init_dtype(self):
        self.dtype = np.float32

83
    def test_check_grad(self):
84 85 86 87
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

88

C
chengduo 已提交
89
class TestLogSigmoid(TestActivation):
90 91
    def setUp(self):
        self.op_type = "logsigmoid"
92 93 94 95 96 97 98
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
99 100

    def test_check_grad(self):
101 102
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
103
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
104 105


C
chengduo 已提交
106
class TestTanh(TestActivation):
107 108
    def setUp(self):
        self.op_type = "tanh"
109 110 111 112 113 114
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
115 116

    def test_check_grad(self):
117 118
        if self.dtype == np.float16:
            return
119
        self.check_grad(['X'], 'Out')
120

121 122 123 124 125 126
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

127

128 129 130 131 132 133 134 135 136 137 138 139 140 141
class TestAtan(TestActivation):
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
142
        self.check_grad(['X'], 'Out')
143 144


C
chengduo 已提交
145
class TestTanhShrink(TestActivation):
K
Kavya Srinet 已提交
146 147
    def setUp(self):
        self.op_type = "tanh_shrink"
148 149 150 151 152 153 154
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
155 156

    def test_check_grad(self):
157 158
        if self.dtype == np.float16:
            return
159
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
160

161

C
chengduo 已提交
162
class TestHardShrink(TestActivation):
163 164
    def setUp(self):
        self.op_type = "hard_shrink"
165 166
        self.init_dtype()

167
        threshold = 0.5
168 169 170
        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
171 172

        self.attrs = {'lambda': threshold}
173 174
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
175 176

    def test_check_grad(self):
177 178
        if self.dtype == np.float16:
            return
179
        self.check_grad(['X'], 'Out')
180 181


C
chengduo 已提交
182
class TestSoftShrink(TestActivation):
183 184
    def setUp(self):
        self.op_type = "softshrink"
185 186
        self.init_dtype()

187
        lambda_val = 0.1
188 189 190 191 192
        x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

193
        self.attrs = {'lambda': lambda_val}
194 195
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
196 197

    def test_check_grad(self):
198 199
        if self.dtype == np.float16:
            return
200
        self.check_grad(['X'], 'Out')
201

202

C
chengduo 已提交
203
class TestSqrt(TestActivation):
204 205
    def setUp(self):
        self.op_type = "sqrt"
206 207 208 209 210 211 212
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
213 214

    def test_check_grad(self):
215 216
        if self.dtype == np.float16:
            return
217
        self.check_grad(['X'], 'Out')
218

219

Z
zhoukunsheng 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [2, 3]).astype(self.dtype)
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
237
class TestAbs(TestActivation):
238 239
    def setUp(self):
        self.op_type = "abs"
240 241
        self.init_dtype()

242
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
243
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
244
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
245
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
246 247
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
248 249 250 251
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
252 253

    def test_check_grad(self):
254 255
        if self.dtype == np.float16:
            return
256
        self.check_grad(['X'], 'Out')
257

258

C
chengduo 已提交
259
class TestCeil(TestActivation):
D
dzhwinter 已提交
260 261
    def setUp(self):
        self.op_type = "ceil"
262 263 264 265 266 267 268
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
269

D
dzhwinter 已提交
270
    # The same reason with TestFloor
C
chengduo 已提交
271
    def test_check_grad(self):
272 273 274
        pass


C
chengduo 已提交
275
class TestFloor(TestActivation):
D
dzhwinter 已提交
276 277
    def setUp(self):
        self.op_type = "floor"
278 279 280 281 282 283 284
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
285

D
dzhwinter 已提交
286
    # the gradient on floor, ceil, round is undefined.
287
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
288 289
    # The same reason with TestFloor
    def test_check_grad(self):
290 291 292
        pass


C
chengduo 已提交
293
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
294 295
    def setUp(self):
        self.op_type = "cos"
296 297 298 299 300 301 302
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
303 304

    def test_check_grad(self):
305 306
        if self.dtype == np.float16:
            return
307
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
308

309

310 311 312 313 314 315 316 317 318 319 320 321 322 323
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
324
        self.check_grad(['X'], 'Out')
325 326


C
chengduo 已提交
327
class TestSin(TestActivation):
C
add sin  
chengduoZH 已提交
328 329
    def setUp(self):
        self.op_type = "sin"
330 331 332 333 334 335 336
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
337 338

    def test_check_grad(self):
339 340
        if self.dtype == np.float16:
            return
341
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
342 343


344 345 346 347 348 349 350 351 352 353 354 355 356 357
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
358
        self.check_grad(['X'], 'Out')
359 360


C
chengduo 已提交
361
class TestRound(TestActivation):
D
dzhwinter 已提交
362 363
    def setUp(self):
        self.op_type = "round"
364 365 366 367 368 369 370
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
371

C
chengduo 已提交
372
    def test_check_grad(self):
373 374 375
        pass


C
chengduo 已提交
376
class TestRelu(TestActivation):
377
    def setUp(self):
Q
qijun 已提交
378
        self.op_type = "relu"
K
Kexin Zhao 已提交
379 380 381
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
382 383
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
384 385 386 387
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
388 389

    def test_check_grad(self):
K
Kexin Zhao 已提交
390 391
        if self.dtype == np.float16:
            return
392
        self.check_grad(['X'], 'Out')
A
Adam 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410


class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
411
        self.check_grad(['X'], 'Out')
412 413


C
Clementine 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427
class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 0.5 * x * (1.0 + erf(x / np.sqrt(2.0)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
428
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
429 430


C
chengduo 已提交
431
class TestBRelu(TestActivation):
432 433
    def setUp(self):
        self.op_type = "brelu"
434 435 436
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
437 438
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
439 440
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
441
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
442 443 444
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
445 446 447

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
448
        self.outputs = {'Out': t}
449 450

    def test_check_grad(self):
451 452
        if self.dtype == np.float16:
            return
453
        self.check_grad(['X'], 'Out')
454

455

C
chengduo 已提交
456
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
457
    def setUp(self):
458
        self.op_type = "relu6"
459 460 461
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
462 463 464 465
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
466
        out = np.minimum(np.maximum(x, 0), threshold)
467

468
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
469
        self.attrs = {'threshold': threshold}
470
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
471

472 473 474
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
475
        self.check_grad(['X'], 'Out')
476 477


H
huangjun12 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

        x = np.random.uniform(-6, 6, [4, 4]).astype(self.dtype)
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
499
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
500 501


C
chengduo 已提交
502
class TestSoftRelu(TestActivation):
503 504
    def setUp(self):
        self.op_type = "soft_relu"
505 506 507
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
508
        threshold = 2.0
Q
qijun 已提交
509 510 511
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
512 513 514
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
515 516 517 518 519
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
520 521

    def test_check_grad(self):
522 523
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
524
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
525

526

C
chengduo 已提交
527
class TestELU(TestActivation):
528 529
    def setUp(self):
        self.op_type = "elu"
530 531 532
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
533
        alpha = 1.
534
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
535 536 537 538
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
539
        self.outputs = {'Out': out}
540 541

    def test_check_grad(self):
542 543
        if self.dtype == np.float16:
            return
544
        self.check_grad(['X'], 'Out')
545 546


547
class TestELUOpError(unittest.TestCase):
548 549 550 551 552 553 554 555 556 557 558
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of elu_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elu, x1)
            # The input dtype of elu_op must be float16 float32 or float64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.elu, x2)


C
chengduo 已提交
559
class TestReciprocal(TestActivation):
Q
qijun 已提交
560 561
    def setUp(self):
        self.op_type = "reciprocal"
562 563 564 565 566 567 568
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
569 570

    def test_check_grad(self):
571 572
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
573
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
574 575


C
chengduo 已提交
576
class TestLog(TestActivation):
Q
qijun 已提交
577 578
    def setUp(self):
        self.op_type = "log"
579 580 581 582 583 584 585
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
586 587

    def test_check_grad(self):
588 589
        if self.dtype == np.float16:
            return
590
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
591

592

C
chengduo 已提交
593
class TestSquare(TestActivation):
Q
qijun 已提交
594 595
    def setUp(self):
        self.op_type = "square"
596 597 598 599 600 601 602
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
603 604

    def test_check_grad(self):
605 606
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
607
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
608

609

C
chengduo 已提交
610
class TestPow(TestActivation):
611 612
    def setUp(self):
        self.op_type = "pow"
613 614 615 616 617 618
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
619
        self.attrs = {'factor': 3.0}
620
        self.outputs = {'Out': out}
621 622

    def test_check_grad(self):
623 624
        if self.dtype == np.float16:
            return
625
        self.check_grad(['X'], 'Out')
626

627

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
650
        self.check_grad(['X'], 'Out')
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

    def test_api(self):
        import paddle.fluid as fluid

        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={"x": input},
                               fetch_list=[out_1, out_2])

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))


C
chengduo 已提交
673
class TestSTanh(TestActivation):
674 675
    def setUp(self):
        self.op_type = "stanh"
676 677 678
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
679 680
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
681 682 683
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
684
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
685
        self.outputs = {'Out': out}
686

Q
qijun 已提交
687
    def test_check_grad(self):
688 689
        if self.dtype == np.float16:
            return
690
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
691

692

C
chengduo 已提交
693
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
694 695
    def setUp(self):
        self.op_type = "softplus"
696
        self.init_dtype()
C
chengduo 已提交
697
        self.dtype = np.float64
698 699 700 701 702 703

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
704 705

    def test_check_grad(self):
706 707
        if self.dtype == np.float16:
            return
708
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
709

710

C
chengduo 已提交
711
class TestSoftsign(TestActivation):
712 713
    def setUp(self):
        self.op_type = "softsign"
714 715 716 717 718 719 720
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
721 722

    def test_check_grad(self):
723 724
        if self.dtype == np.float16:
            return
725
        self.check_grad(['X'], 'Out')
726 727


C
chengduo 已提交
728
class TestThresholdedRelu(TestActivation):
729 730
    def setUp(self):
        self.op_type = "thresholded_relu"
731 732
        self.init_dtype()

733 734
        threshold = 0.25
        self.relative_error = 0.005
735
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
736 737 738

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
739
        out = (X > threshold) * X
740

741
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
742
        self.attrs = {'threshold': threshold}
743
        self.outputs = {'Out': out}
744 745

    def test_check_grad(self):
746 747
        if self.dtype == np.float16:
            return
748
        self.check_grad(['X'], 'Out')
749 750


C
chengduo 已提交
751
class TestHardSigmoid(TestActivation):
752 753
    def setUp(self):
        self.op_type = "hard_sigmoid"
754 755
        self.init_dtype()

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
771 772 773 774
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
775 776

    def test_check_grad(self):
777 778
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
779
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
780

781

C
chengduo 已提交
782
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
783 784
    def setUp(self):
        self.op_type = "swish"
785 786 787 788 789 790 791 792 793
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
794 795

    def test_check_grad(self):
796 797
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
798
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
799

800

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
820 821 822 823 824 825 826 827 828 829
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
830

C
chengduo 已提交
831
        def test_check_output(self):
832
            place = core.CUDAPlace(0)
C
chengduo 已提交
833 834 835
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
836

C
chengduo 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
create_test_act_fp16_class(TestTanhShrink)
create_test_act_fp16_class(TestHardShrink)
create_test_act_fp16_class(TestSoftShrink)
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
861
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
862
create_test_act_fp16_class(TestSin)
863 864
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
865 866
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
867
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
868 869 870 871 872 873 874 875
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
876
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
877 878 879 880 881 882
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
883
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
884

Q
qijun 已提交
885 886
if __name__ == "__main__":
    unittest.main()